Multi-functions of hydrogel with bilayer-based lamellar structure
A novel hybrid hydrogel has been developed by combining bilayer-based lamellar structure of a self-assembled polymer surfactant and polymer network of conventional hydrogel system. A wide range of lamellar structure from micro-domain up to macro-domain (cm-scale) has been successfully generated in t...
Gespeichert in:
Veröffentlicht in: | Reactive & functional polymers 2013-07, Vol.73 (7), p.929-935 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel hybrid hydrogel has been developed by combining bilayer-based lamellar structure of a self-assembled polymer surfactant and polymer network of conventional hydrogel system. A wide range of lamellar structure from micro-domain up to macro-domain (cm-scale) has been successfully generated in the hydrogel. Flat, infinitely large, and perfectly aligned lamellar macro-domain was formed by applying mechanical shear to the gel forming precursor solution containing monomer, cross-linker, and initiator. The obtained hydrogel system contains macroscopic, single-domain, periodical stacking of integrated microscopic lamellar bilayers inside the polymer matrix of the hydrogel. Periodical stacking of the bilayers in the hydrogel selectively diffract visible light to exhibit magnificent structural color. Due to the uniaxial orientation of the bilayer, the hydrogel possesses superb functions that have never been realized before, such as the one-dimensional swelling, anisotropic Young’s modulus, anisotropic molecular permeation, and diffusion. Furthermore, the hydrogel exhibits excellent color tuning ability over a wide spectrum range by mechanical stimuli. |
---|---|
ISSN: | 1381-5148 |
DOI: | 10.1016/j.reactfunctpolym.2013.01.016 |