Elastic envelopes of porous sandstones
In this paper we focus on the case of sandstones for which many experimental data are available. We present a simple 2‒D model derived from granular media mechanics. This model assumes that the granular microstructure is a key point to understand the mechanical behavior. We consider a periodic grain...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2013-07, Vol.40 (14), p.3550-3555 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we focus on the case of sandstones for which many experimental data are available. We present a simple 2‒D model derived from granular media mechanics. This model assumes that the granular microstructure is a key point to understand the mechanical behavior. We consider a periodic grain network and focus on the first‒order neighbors of a given grain. These approximations are sufficient to explain the overall mechanical behavior in the Q versus P stress space. In the low pressure range, the controlling micromechanism is assumed to be tensile failure at grain contacts. The “dilatant” envelope is found to be a straight line in the stress space. In the high pressure range, the controlling micromechanism is assumed to be grain fragmentation. The “compactant” envelope is found to be a straight line in the stress space. We observed that this 2‒D model slightly overestimates Q versus P slopes determined experimentally (2.3 instead of 1.5), which can be explained by the approximations made.
Key Points
The model predicts at low pressure elastic limit that is line with a slope >0
It predicts at high pressure elastic limit that is a line with a slope |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1002/grl.50676 |