Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms
Local Indicators of Spatial Aggregation (LISA) can be used as objectives in a multicriteria framework when highly autocorrelated areas (hot-spots) must be identified and geographically located in complex areas. To do so, a Multi-Objective Evolutionary Algorithm (MOEA) based on SPEA2 (Strength Pareto...
Gespeichert in:
Veröffentlicht in: | Annals of operations research 2014-08, Vol.219 (1), p.187-202 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Local Indicators of Spatial Aggregation (LISA) can be used as objectives in a multicriteria framework when highly autocorrelated areas (hot-spots) must be identified and geographically located in complex areas. To do so, a Multi-Objective Evolutionary Algorithm (MOEA) based on SPEA2 (Strength Pareto Evolutionary Algorithm v.2) has been designed to evaluate three different fitness functions (fine-grained strength, the weighted sum of objectives and fuzzy evaluation of weighted objectives) and three LISA methods. MOEA makes it possible to achieve a compromise between spatial econometric methods as it highlights areas where a specific phenomenon shows significantly high autocorrelation. The spatial distribution of financially compromised olive-tree farms in Andalusia (Spain) was selected for analysis and two fuzzy hot-spots were statistically identified and spatially located. Hot-spots can be considered to be spatial fuzzy sets where the spatial units have a membership degree that can also be calculated. |
---|---|
ISSN: | 0254-5330 1572-9338 |
DOI: | 10.1007/s10479-011-0841-3 |