On the Number of Perfect Matchings in a Bipartite Graph

In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2013-01, Vol.27 (2), p.940-958
Hauptverfasser: de Carvalho, Marcelo H., Lucchesi, Cláudio L., Murty, U. S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 958
container_issue 2
container_start_page 940
container_title SIAM journal on discrete mathematics
container_volume 27
creator de Carvalho, Marcelo H.
Lucchesi, Cláudio L.
Murty, U. S. R.
description In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124--169] on brace generation, we show that any brace on $n$ vertices has at least $(n-2)^2/8$ perfect matchings. A bi-wheel on $n$ vertices has $(n-2)^2/4$ perfect matchings. We conjecture that there exists an integer $N$ such that every brace on $n\geq N$ vertices has at least $(n-2)^2/4$ perfect matchings. [PUBLICATION ABSTRACT]
doi_str_mv 10.1137/120865938
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671563467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671563467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-22237cd1a476e24d2d3d5cf5292ce779581f122d004c239b6d10e8249a660b233</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EEqUw8A8sscAQ8Hv-zAgVFKRCGWC2XMehqdok2M7AvyeoiIHp3uHo6uoQcg7sGoDrG0BmlCy5OSATYKUsNAh1SCbMjF0YBsfkJKUNYyAEyAnRy5bmdaAvw24VIu1q-hpiHXymzy77ddN-JNq01NG7pncxNznQeXT9-pQc1W6bwtlvTsn7w_3b7LFYLOdPs9tF4VGyXCAi174CJ7QKKCqseCV9LbFEH7QupYEaECvGhEderlQFLBgUpVOKrZDzKbnc7_ax-xxCynbXJB-2W9eGbkgWlAapuFB6RC_-oZtuiO34zgIXBpAbhiN1tad87FKKobZ9bHYufllg9keh_VPIvwE9mV67</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1348123802</pqid></control><display><type>article</type><title>On the Number of Perfect Matchings in a Bipartite Graph</title><source>LOCUS - SIAM's Online Journal Archive</source><creator>de Carvalho, Marcelo H. ; Lucchesi, Cláudio L. ; Murty, U. S. R.</creator><creatorcontrib>de Carvalho, Marcelo H. ; Lucchesi, Cláudio L. ; Murty, U. S. R.</creatorcontrib><description>In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124--169] on brace generation, we show that any brace on $n$ vertices has at least $(n-2)^2/8$ perfect matchings. A bi-wheel on $n$ vertices has $(n-2)^2/4$ perfect matchings. We conjecture that there exists an integer $N$ such that every brace on $n\geq N$ vertices has at least $(n-2)^2/4$ perfect matchings. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0895-4801</identifier><identifier>EISSN: 1095-7146</identifier><identifier>DOI: 10.1137/120865938</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Covering ; Graph theory ; Graphs ; Integers ; Matching ; Mathematical analysis ; Theorems</subject><ispartof>SIAM journal on discrete mathematics, 2013-01, Vol.27 (2), p.940-958</ispartof><rights>2013, Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c250t-22237cd1a476e24d2d3d5cf5292ce779581f122d004c239b6d10e8249a660b233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3172,27905,27906</link.rule.ids></links><search><creatorcontrib>de Carvalho, Marcelo H.</creatorcontrib><creatorcontrib>Lucchesi, Cláudio L.</creatorcontrib><creatorcontrib>Murty, U. S. R.</creatorcontrib><title>On the Number of Perfect Matchings in a Bipartite Graph</title><title>SIAM journal on discrete mathematics</title><description>In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124--169] on brace generation, we show that any brace on $n$ vertices has at least $(n-2)^2/8$ perfect matchings. A bi-wheel on $n$ vertices has $(n-2)^2/4$ perfect matchings. We conjecture that there exists an integer $N$ such that every brace on $n\geq N$ vertices has at least $(n-2)^2/4$ perfect matchings. [PUBLICATION ABSTRACT]</description><subject>Covering</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Integers</subject><subject>Matching</subject><subject>Mathematical analysis</subject><subject>Theorems</subject><issn>0895-4801</issn><issn>1095-7146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkD1PwzAURS0EEqUw8A8sscAQ8Hv-zAgVFKRCGWC2XMehqdok2M7AvyeoiIHp3uHo6uoQcg7sGoDrG0BmlCy5OSATYKUsNAh1SCbMjF0YBsfkJKUNYyAEyAnRy5bmdaAvw24VIu1q-hpiHXymzy77ddN-JNq01NG7pncxNznQeXT9-pQc1W6bwtlvTsn7w_3b7LFYLOdPs9tF4VGyXCAi174CJ7QKKCqseCV9LbFEH7QupYEaECvGhEderlQFLBgUpVOKrZDzKbnc7_ax-xxCynbXJB-2W9eGbkgWlAapuFB6RC_-oZtuiO34zgIXBpAbhiN1tad87FKKobZ9bHYufllg9keh_VPIvwE9mV67</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>de Carvalho, Marcelo H.</creator><creator>Lucchesi, Cláudio L.</creator><creator>Murty, U. S. R.</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>On the Number of Perfect Matchings in a Bipartite Graph</title><author>de Carvalho, Marcelo H. ; Lucchesi, Cláudio L. ; Murty, U. S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-22237cd1a476e24d2d3d5cf5292ce779581f122d004c239b6d10e8249a660b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Covering</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Integers</topic><topic>Matching</topic><topic>Mathematical analysis</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Carvalho, Marcelo H.</creatorcontrib><creatorcontrib>Lucchesi, Cláudio L.</creatorcontrib><creatorcontrib>Murty, U. S. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Carvalho, Marcelo H.</au><au>Lucchesi, Cláudio L.</au><au>Murty, U. S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Number of Perfect Matchings in a Bipartite Graph</atitle><jtitle>SIAM journal on discrete mathematics</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>27</volume><issue>2</issue><spage>940</spage><epage>958</epage><pages>940-958</pages><issn>0895-4801</issn><eissn>1095-7146</eissn><abstract>In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124--169] on brace generation, we show that any brace on $n$ vertices has at least $(n-2)^2/8$ perfect matchings. A bi-wheel on $n$ vertices has $(n-2)^2/4$ perfect matchings. We conjecture that there exists an integer $N$ such that every brace on $n\geq N$ vertices has at least $(n-2)^2/4$ perfect matchings. [PUBLICATION ABSTRACT]</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/120865938</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-4801
ispartof SIAM journal on discrete mathematics, 2013-01, Vol.27 (2), p.940-958
issn 0895-4801
1095-7146
language eng
recordid cdi_proquest_miscellaneous_1671563467
source LOCUS - SIAM's Online Journal Archive
subjects Covering
Graph theory
Graphs
Integers
Matching
Mathematical analysis
Theorems
title On the Number of Perfect Matchings in a Bipartite Graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Number%20of%20Perfect%20Matchings%20in%20a%20Bipartite%20Graph&rft.jtitle=SIAM%20journal%20on%20discrete%20mathematics&rft.au=de%20Carvalho,%20Marcelo%20H.&rft.date=2013-01-01&rft.volume=27&rft.issue=2&rft.spage=940&rft.epage=958&rft.pages=940-958&rft.issn=0895-4801&rft.eissn=1095-7146&rft_id=info:doi/10.1137/120865938&rft_dat=%3Cproquest_cross%3E1671563467%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1348123802&rft_id=info:pmid/&rfr_iscdi=true