On the Number of Perfect Matchings in a Bipartite Graph

In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on discrete mathematics 2013-01, Vol.27 (2), p.940-958
Hauptverfasser: de Carvalho, Marcelo H., Lucchesi, Cláudio L., Murty, U. S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124--169] on brace generation, we show that any brace on $n$ vertices has at least $(n-2)^2/8$ perfect matchings. A bi-wheel on $n$ vertices has $(n-2)^2/4$ perfect matchings. We conjecture that there exists an integer $N$ such that every brace on $n\geq N$ vertices has at least $(n-2)^2/4$ perfect matchings. [PUBLICATION ABSTRACT]
ISSN:0895-4801
1095-7146
DOI:10.1137/120865938