On the Number of Perfect Matchings in a Bipartite Graph
In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124...
Gespeichert in:
Veröffentlicht in: | SIAM journal on discrete mathematics 2013-01, Vol.27 (2), p.940-958 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we show that, with 11 exceptions, any matching covered bipartite graph on $n$ vertices, with minimum degree greater than two, has at least $2n-4$ perfect matchings. Using this bound, which is the best possible, and McCuaig's theorem [W. McCuaig, J. Graph Theory, 38 (2001), pp. 124--169] on brace generation, we show that any brace on $n$ vertices has at least $(n-2)^2/8$ perfect matchings. A bi-wheel on $n$ vertices has $(n-2)^2/4$ perfect matchings. We conjecture that there exists an integer $N$ such that every brace on $n\geq N$ vertices has at least $(n-2)^2/4$ perfect matchings. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0895-4801 1095-7146 |
DOI: | 10.1137/120865938 |