Synthesis of high surface area CuMn2O4 by supercritical anti-solvent precipitation for the oxidation of CO at ambient temperature
A series of high surface area nanocrystalline copper manganese oxide catalysts have been prepared by supercritical anti-solvent (SAS) precipitation using CO2 and tested for the ambient temperature oxidation of CO. The catalysts were prepared by precipitation from an ethanol/metal acetate solution an...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2011-01, Vol.1 (5), p.740-746 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A series of high surface area nanocrystalline copper manganese oxide catalysts have been prepared by supercritical anti-solvent (SAS) precipitation using CO2 and tested for the ambient temperature oxidation of CO. The catalysts were prepared by precipitation from an ethanol/metal acetate solution and the addition of small quantities of water was found to result in a mixed acetate precursor with surface areas 200 m2 g-1, considerably higher than those prepared by conventional precipitation methods. The surface area of the final calcined mixed oxide was found to be dependent upon the initial water concentration. XRD and FT-IR analysis indicated that the addition of water promoted the formation of carbonate species in the amorphous acetate precursor, with high resolution TEM and STEM showing the material to consist of spherical agglomerations of fibrous strings of ca. 30 nm length. This is in contrast to the material prepared in the absence of water, using the same SAS methodology, which typically yields quasi-spherical particles of 100 nm size. |
---|---|
ISSN: | 2044-4753 2044-4761 |
DOI: | 10.1039/C1CY00064K |