New Variable Step-Sizes Minimizing Mean-Square Deviation for the LMS-Type Algorithms
The least-mean-square-type (LMS-type) algorithms are known as simple and effective adaptation algorithms. However, the LMS-type algorithms have a trade-off between the convergence rate and steady-state performance. In this paper, we investigate a new variable step-size approach to achieve fast conve...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2014-07, Vol.33 (7), p.2251-2265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The least-mean-square-type (LMS-type) algorithms are known as simple and effective adaptation algorithms. However, the LMS-type algorithms have a trade-off between the convergence rate and steady-state performance. In this paper, we investigate a new variable step-size approach to achieve fast convergence rate and low steady-state misadjustment. By approximating the optimal step-size that minimizes the mean-square deviation, we derive variable step-sizes for both the time-domain normalized LMS (NLMS) algorithm and the transform-domain LMS (TDLMS) algorithm. The proposed variable step-sizes are simple quotient forms of the filtered versions of the quadratic error and very effective for the NLMS and TDLMS algorithms. The computer simulations are demonstrated in the framework of adaptive system modeling. Superior performance is obtained compared to the existing popular variable step-size approaches of the NLMS and TDLMS algorithms. |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/s00034-014-9744-2 |