The impact of yaw error on aeroelastic characteristics of a horizontal axis wind turbine blade

Horizontal axis wind turbines operate under yawed conditions for a considerable period of time due to the power control mechanism or sudden changes in the wind direction. This in turn can alter the dynamic characteristics of a turbine blade because the flow over the rotor plane may trigger complicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2013-12, Vol.60, p.256-268
Hauptverfasser: Jeong, Min-Soo, Kim, Sang-Woo, Lee, In, Yoo, Seung-Jae, Park, K.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Horizontal axis wind turbines operate under yawed conditions for a considerable period of time due to the power control mechanism or sudden changes in the wind direction. This in turn can alter the dynamic characteristics of a turbine blade because the flow over the rotor plane may trigger complicated induced velocity patterns. In this study, an aeroelastic analysis under yawed flow conditions is carried out to investigate the effects of yaw error on the blade behaviors and dynamic stability. A beam model including geometric nonlinearity coupled with unsteady aerodynamics based on a free-vortex wake method with the blade element theory is employed in the present study. The aerodynamic approach for a horizontal axis wind turbine blade under yawed flow conditions is verified through comparison with measurements. It is also shown that the present method gives slightly better results at high yaw angles than does the method previously published in the literature. The dynamic instabilities of a National Renewable Energy Laboratory 5 MW reference wind turbine have subsequently been investigated for various wind speeds and yaw angles. Observations are made that yaw effects induce considerable changes in airloads and blade structural behavior. Also, the aeroelastic damping values for this particular blade under yawed flow conditions can be reduced by up to approximately 33% in the worst case. Therefore, it is concluded that the impacts of yaw misalignments adversely influenced the dynamic aeroelastic stability of the horizontal axis wind turbine blade. •We perform aerodynamic and aeroelastic analyses of a horizontal axis wind turbine blade under yawed flow conditions.•We investigate yaw effects on the aerodynamic loads and aeroelastic characteristics.•Unsteady aerodynamic features are well-captured by present method.•Periodic steady state responses and aeroelastic damping values are affected by inflow effects of a yawed wind turbine.
ISSN:0960-1481
1879-0682
DOI:10.1016/j.renene.2013.05.014