Simulation of the tensile properties of silica aerogels: the effects of cluster structure and primary particle size

A new two-level model is proposed to investigate the relationship between the mechanical properties and microstructure of silica aerogels. This two-level model consists of the particle-particle interaction model and the cluster structure model. The particle-particle interaction model is proposed to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2014-09, Vol.10 (33), p.6266-6277
Hauptverfasser: Liu, Qiang, Lu, Zixing, Zhu, Man, Yuan, Zeshuai, Yang, Zhenyu, Hu, Zijun, Li, Junning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new two-level model is proposed to investigate the relationship between the mechanical properties and microstructure of silica aerogels. This two-level model consists of the particle-particle interaction model and the cluster structure model. The particle-particle interaction model is proposed to describe interactions between primary particles, in which the polymerization reaction between primary particles is considered. The cluster structure model represents the geometrical structure of silica aerogels, and it is established using a modified diffusion-limited colloid aggregation (DLCA) algorithm. This two-level model is used to investigate the tensile behavior of silica aerogels based on the discrete element method (DEM). The numerical results show that the primary particle size has significant effects on the elastic modulus and tensile strength of silica aerogels. Moreover, the power-law relationships between tensile properties and aerogel density are dependent on the variation of the primary particle radius with density. The present results can explain the difference among different experimental exponents to a certain extent. In comparison with experimental data within a wide density range, this two-level model provides good quantitative estimations of the elastic modulus and tensile strength of silica aerogels after the size effects of the primary particle are considered. This paper provides a fundamental understanding of the relationship between the mechanical properties and microstructure of silica aerogels. The two-level model can be extended to study the mechanical properties of other aerogels and aerogel composites.
ISSN:1744-683X
1744-6848
DOI:10.1039/c4sm01074d