Effect of substitutional Sr ion on mechanical properties of calcium phosphate bone cement
A novel calcium phosphate cement was developed by adding different amount of SrO to tetracalcium phosphate during the fabrication process. The experimental results show that compressive strength of cements based on tetracalcium phosphate doped with SrO significantly increases with the increase of Sr...
Gespeichert in:
Veröffentlicht in: | Journal of Wuhan University of Technology. Materials science edition 2013-08, Vol.28 (4), p.741-745 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A novel calcium phosphate cement was developed by adding different amount of SrO to tetracalcium phosphate during the fabrication process. The experimental results show that compressive strength of cements based on tetracalcium phosphate doped with SrO significantly increases with the increase of SrO content, approximately 60 MPa, whilst the mechanical behavior of CPC slightly decreases if 0.7wt% SrO is added. X-ray diffraction measurement confirms the setting reaction of doped cements is similar to that of pure calcium phosphate cement (CPC). Low crystalline hydroxyapatite (HA) is found to be the main constituent of set cement. A mechanical reinforcement effect is resulted from the substitution of Sr ion to Ca
2+
in tetracalcium phosphate (TTCP), accelerating HA crystal formation and a more cross-linked cement structure. In vitro bioactivity tests showed that CPC added with 0.5wt% SrO had a more rapid degradation compared with pure CPC. |
---|---|
ISSN: | 1000-2413 1993-0437 |
DOI: | 10.1007/s11595-013-0762-x |