Poincaré inequalities, embeddings, and wild groups

We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2011-09, Vol.147 (5), p.1546-1572
Hauptverfasser: Naor, Assaf, Silberman, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1572
container_issue 5
container_start_page 1546
container_title Compositio mathematica
container_volume 147
creator Naor, Assaf
Silberman, Lior
description We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are stable under natural operations such as scaling, Gromov–Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov’s ‘wild groups’.
doi_str_mv 10.1112/S0010437X11005343
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671543168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1112_S0010437X11005343</cupid><sourcerecordid>2511366011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-22d950e028138611abf2671469b098551d5a593c2e2f25cb44e65c8fc93a4df23</originalsourceid><addsrcrecordid>eNp1kM1KQzEQhYMoWKsP4K64cuHVTP6aLKX4BwUFFdyF3CS3pNyfNulFfBu3voa-mCktCIqrGTjfOTMchI4BnwMAuXjEGDCj4xcAjDlldAcNgI9xwSUTu2iwlou1vo8OUppjjIkkcoDYQxdaa-LXxyi0ftmbOqyCT2cj35TeudDO8m5aN3oNtft8n8WuX6RDtFeZOvmj7Ryi5-urp8ltMb2_uZtcTgvLuFwVhDjFsc-XgEoBYMqKiDEwoUqsJOfguOGKWuJJRbgtGfOCW1lZRQ1zFaFDdLrJXcRu2fu00k1I1te1aX3XJw05jTMKQmb05Bc67_rY5u-0wlQqIbjIEGwgG7uUoq_0IobGxDcNWK9r1H9qzB669ZimjMHN_E_y_65vqwRzVg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>903896656</pqid></control><display><type>article</type><title>Poincaré inequalities, embeddings, and wild groups</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Naor, Assaf ; Silberman, Lior</creator><creatorcontrib>Naor, Assaf ; Silberman, Lior</creatorcontrib><description>We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are stable under natural operations such as scaling, Gromov–Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov’s ‘wild groups’.</description><identifier>ISSN: 0010-437X</identifier><identifier>EISSN: 1570-5846</identifier><identifier>DOI: 10.1112/S0010437X11005343</identifier><language>eng</language><publisher>London, UK: London Mathematical Society</publisher><subject>Cartesian ; Convexity ; Inequalities ; Metric space ; Nonlinearity</subject><ispartof>Compositio mathematica, 2011-09, Vol.147 (5), p.1546-1572</ispartof><rights>Copyright © Foundation Compositio Mathematica 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-22d950e028138611abf2671469b098551d5a593c2e2f25cb44e65c8fc93a4df23</citedby><cites>FETCH-LOGICAL-c458t-22d950e028138611abf2671469b098551d5a593c2e2f25cb44e65c8fc93a4df23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0010437X11005343/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Naor, Assaf</creatorcontrib><creatorcontrib>Silberman, Lior</creatorcontrib><title>Poincaré inequalities, embeddings, and wild groups</title><title>Compositio mathematica</title><addtitle>Compositio Math</addtitle><description>We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are stable under natural operations such as scaling, Gromov–Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov’s ‘wild groups’.</description><subject>Cartesian</subject><subject>Convexity</subject><subject>Inequalities</subject><subject>Metric space</subject><subject>Nonlinearity</subject><issn>0010-437X</issn><issn>1570-5846</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1KQzEQhYMoWKsP4K64cuHVTP6aLKX4BwUFFdyF3CS3pNyfNulFfBu3voa-mCktCIqrGTjfOTMchI4BnwMAuXjEGDCj4xcAjDlldAcNgI9xwSUTu2iwlou1vo8OUppjjIkkcoDYQxdaa-LXxyi0ftmbOqyCT2cj35TeudDO8m5aN3oNtft8n8WuX6RDtFeZOvmj7Ryi5-urp8ltMb2_uZtcTgvLuFwVhDjFsc-XgEoBYMqKiDEwoUqsJOfguOGKWuJJRbgtGfOCW1lZRQ1zFaFDdLrJXcRu2fu00k1I1te1aX3XJw05jTMKQmb05Bc67_rY5u-0wlQqIbjIEGwgG7uUoq_0IobGxDcNWK9r1H9qzB669ZimjMHN_E_y_65vqwRzVg</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Naor, Assaf</creator><creator>Silberman, Lior</creator><general>London Mathematical Society</general><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20110901</creationdate><title>Poincaré inequalities, embeddings, and wild groups</title><author>Naor, Assaf ; Silberman, Lior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-22d950e028138611abf2671469b098551d5a593c2e2f25cb44e65c8fc93a4df23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Cartesian</topic><topic>Convexity</topic><topic>Inequalities</topic><topic>Metric space</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naor, Assaf</creatorcontrib><creatorcontrib>Silberman, Lior</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Compositio mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naor, Assaf</au><au>Silberman, Lior</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poincaré inequalities, embeddings, and wild groups</atitle><jtitle>Compositio mathematica</jtitle><addtitle>Compositio Math</addtitle><date>2011-09-01</date><risdate>2011</risdate><volume>147</volume><issue>5</issue><spage>1546</spage><epage>1572</epage><pages>1546-1572</pages><issn>0010-437X</issn><eissn>1570-5846</eissn><abstract>We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are stable under natural operations such as scaling, Gromov–Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov’s ‘wild groups’.</abstract><cop>London, UK</cop><pub>London Mathematical Society</pub><doi>10.1112/S0010437X11005343</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-437X
ispartof Compositio mathematica, 2011-09, Vol.147 (5), p.1546-1572
issn 0010-437X
1570-5846
language eng
recordid cdi_proquest_miscellaneous_1671543168
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
subjects Cartesian
Convexity
Inequalities
Metric space
Nonlinearity
title Poincaré inequalities, embeddings, and wild groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poincar%C3%A9%20inequalities,%20embeddings,%20and%20wild%C2%A0groups&rft.jtitle=Compositio%20mathematica&rft.au=Naor,%20Assaf&rft.date=2011-09-01&rft.volume=147&rft.issue=5&rft.spage=1546&rft.epage=1572&rft.pages=1546-1572&rft.issn=0010-437X&rft.eissn=1570-5846&rft_id=info:doi/10.1112/S0010437X11005343&rft_dat=%3Cproquest_cross%3E2511366011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=903896656&rft_id=info:pmid/&rft_cupid=10_1112_S0010437X11005343&rfr_iscdi=true