Poincaré inequalities, embeddings, and wild groups

We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Compositio mathematica 2011-09, Vol.147 (5), p.1546-1572
Hauptverfasser: Naor, Assaf, Silberman, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present geometric conditions on a metric space (Y,dY) ensuring that, almost surely, any isometric action on Y by Gromov’s expander-based random group has a common fixed point. These geometric conditions involve uniform convexity and the validity of nonlinear Poincaré inequalities, and they are stable under natural operations such as scaling, Gromov–Hausdorff limits, and Cartesian products. We use methods from metric embedding theory to establish the validity of these conditions for a variety of classes of metric spaces, thus establishing new fixed point results for actions of Gromov’s ‘wild groups’.
ISSN:0010-437X
1570-5846
DOI:10.1112/S0010437X11005343