Yoshida lifts and simultaneous non‐vanishing of dihedral twists of modular L‐functions
Given elliptic modular forms f and g satisfying certain conditions on their weights and levels, we prove (a quantitative version of the statement) that there exist infinitely many imaginary quadratic fields K and characters χ of the ideal class group ClK such that L(½, BCK(f) × χ) ≠ 0 and L(½, BCK(g...
Gespeichert in:
Veröffentlicht in: | Journal of the London Mathematical Society 2013-08, Vol.88 (1), p.251-270 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given elliptic modular forms f and g satisfying certain conditions on their weights and levels, we prove (a quantitative version of the statement) that there exist infinitely many imaginary quadratic fields K and characters χ of the ideal class group ClK such that L(½, BCK(f) × χ) ≠ 0 and L(½, BCK(g) × χ) ≠ 0. The proof is based on a non‐vanishing result for Fourier coefficients of Siegel modular forms combined with the theory of Yoshida liftings. |
---|---|
ISSN: | 0024-6107 1469-7750 |
DOI: | 10.1112/jlms/jdt008 |