Yoshida lifts and simultaneous non‐vanishing of dihedral twists of modular L‐functions

Given elliptic modular forms f and g satisfying certain conditions on their weights and levels, we prove (a quantitative version of the statement) that there exist infinitely many imaginary quadratic fields K and characters χ of the ideal class group ClK such that L(½, BCK(f) × χ) ≠ 0 and L(½, BCK(g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the London Mathematical Society 2013-08, Vol.88 (1), p.251-270
Hauptverfasser: Saha, Abhishek, Schmidt, Ralf
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given elliptic modular forms f and g satisfying certain conditions on their weights and levels, we prove (a quantitative version of the statement) that there exist infinitely many imaginary quadratic fields K and characters χ of the ideal class group ClK such that L(½, BCK(f) × χ) ≠ 0 and L(½, BCK(g) × χ) ≠ 0. The proof is based on a non‐vanishing result for Fourier coefficients of Siegel modular forms combined with the theory of Yoshida liftings.
ISSN:0024-6107
1469-7750
DOI:10.1112/jlms/jdt008