Microemulsion extrusion technique: a new method to produce lipid nanoparticles

Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 2013-10, Vol.15 (10), p.1-15, Article 1960
Hauptverfasser: de Jesus, Marcelo Bispo, Radaic, Allan, Zuhorn, Inge S., de Paula, Eneida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been intensively investigated for different applications, including their use as drug and gene delivery systems. Different techniques have been employed to produce lipid nanoparticles, of which high pressure homogenization is the standard technique that is adopted nowadays. Although this method has a high efficiency, does not require the use of organic solvents, and allows large-scale production, some limitations impede its application at laboratory scale: the equipment is expensive, there is a need of huge amounts of surfactants and co-surfactants during the preparation, and the operating conditions are energy intensive. Here, we present the microemulsion extrusion technique as an alternative method to prepare lipid nanoparticles. The parameters to produce lipid nanoparticles using microemulsion extrusion were established, and the lipid particles produced (SLN, NLC, and liposomes) were characterized with regard to size (from 130 to 190 nm), zeta potential, and drug (mitoxantrone) and gene (pDNA) delivery properties. In addition, the particles’ in vitro co-delivery capacity (to carry mitoxantrone plus pDNA encoding the phosphatase and tensin homologue, PTEN) was tested in normal (BALB 3T3 fibroblast) and cancer (PC3 prostate and MCF-7 breast) cell lines. The results show that the microemulsion extrusion technique is fast, inexpensive, reproducible, free of organic solvents, and suitable for small volume preparations of lipid nanoparticles. Its application is particularly interesting when using rare and/or costly drugs or ingredients (e.g., cationic lipids for gene delivery or labeled lipids for nanoparticle tracking/diagnosis).
ISSN:1388-0764
1572-896X
DOI:10.1007/s11051-013-1960-3