Homometric sets in trees

Let G=(V,E) denote a simple graph with vertex set V and edge set E. The profile of a vertex set V′⊆V denotes the multiset of pairwise distances between the vertices of V′. Two disjoint subsets of V are homometric if their profiles are the same. If G is a tree on n vertices, we prove that its vertex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2014-01, Vol.35, p.256-263
Hauptverfasser: Fulek, Radoslav, Mitrović, Slobodan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G=(V,E) denote a simple graph with vertex set V and edge set E. The profile of a vertex set V′⊆V denotes the multiset of pairwise distances between the vertices of V′. Two disjoint subsets of V are homometric if their profiles are the same. If G is a tree on n vertices, we prove that its vertex set contains a pair of disjoint homometric subsets of size at least n/2−1. Previously it was known that such a pair of size at least roughly n1/3 exists. We get a better result in the case of haircomb trees, in which we are able to find a pair of disjoint homometric sets of size at least cn2/3 for a constant c>0.
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2013.06.008