Performance study of the simplified theory of plastic zones and the Twice-Yield method for the fatigue check

As elastic–plastic fatigue analyses are still time consuming the simplified elastic–plastic analysis (e.g. ASME Section III, NB 3228.5, the French RCC-M code, paragraphs B 3234.3, B 3234.5 and B3234.6 and the German KTA rule 3201.2, paragraph 7.8.4) is often applied. Besides linearly elastic analyse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of pressure vessels and piping 2014-04, Vol.116, p.10-19
Hauptverfasser: Hübel, Hartwig, Willuweit, Adrian, Rudolph, Jürgen, Ziegler, Rainer, Lang, Hermann, Rother, Klemens, Deller, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As elastic–plastic fatigue analyses are still time consuming the simplified elastic–plastic analysis (e.g. ASME Section III, NB 3228.5, the French RCC-M code, paragraphs B 3234.3, B 3234.5 and B3234.6 and the German KTA rule 3201.2, paragraph 7.8.4) is often applied. Besides linearly elastic analyses and factorial plasticity correction (Ke factors) direct methods are an option. In fact, calculation effort and accuracy of results are growing in the following graded scheme: a) linearly elastic analysis along with Ke correction, b) direct methods for the determination of stabilized elastic–plastic strain ranges and c) incremental elastic–plastic methods for the determination of stabilized elastic–plastic strain ranges. The paper concentrates on option b) by substantiating the practical applicability of the simplified theory of plastic zones STPZ (based on Zarka's method) and – for comparison – the established Twice-Yield method. The Twice-Yield method is explicitly addressed in ASME Code, Section VIII, Div. 2. Application relevant aspects are particularly addressed. Furthermore, the applicability of the STPZ for arbitrary load time histories in connection with an appropriate cycle counting method is discussed. Note, that the STPZ is applicable both for the determination of (fatigue relevant) elastic–plastic strain ranges and (ratcheting relevant) locally accumulated strains. This paper concentrates on the performance of the method in terms of the determination of elastic–plastic strain ranges and fatigue usage factors. The additional performance in terms of locally accumulated strains and ratcheting will be discussed in a future publication. •Simplified elastic–plastic fatigue analyses.•Simplified theory of plastic zones.•Thermal cyclic loading.•Twice-Yield method.•Practical application examples.
ISSN:0308-0161
1879-3541
DOI:10.1016/j.ijpvp.2014.01.003