MAC-Aware and Power-Aware Image Aggregation Scheme in Wireless Visual Sensor Networks

Traditional wireless sensor networks (WSNs) transmit the scalar data (e.g., temperature and irradiation) to the sink node. A new wireless visual sensor network (WVSN) that can transmit images data is a more promising solution than the WSN on sensing, detecting, and monitoring the environment to enha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sensors 2013-01, Vol.2013 (2013), p.1-13
Hauptverfasser: Chen, Yui-Liang, Yen, Hong-Hsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional wireless sensor networks (WSNs) transmit the scalar data (e.g., temperature and irradiation) to the sink node. A new wireless visual sensor network (WVSN) that can transmit images data is a more promising solution than the WSN on sensing, detecting, and monitoring the environment to enhance awareness of the cyber, physical, and social contexts of our daily activities. However, the size of image data is much bigger than the scalar data that makes image transmission a challenging issue in battery-limited WVSN. In this paper, we study the energy efficient image aggregation scheme in WVSN. Image aggregation is a possible way to eliminate the redundant portions of the image captured by different data source nodes. Hence, transmission power could be reduced via the image aggregation scheme. However, image aggregation requires image processing that incurs node processing power. Besides the additional energy consumption from node processing, there is another MAC-aware retransmission energy loss from image aggregation. In this paper, we first propose the mathematical model to capture these three factors (image transmission, image processing, and MAC retransmission) in WVSN. Numerical results based on the mathematical model and real WVSN sensor node (i.e., Meerkats node) are performed to optimize the energy consumption tradeoff between image transmission, image processing, and MAC retransmission.
ISSN:1687-725X
1687-7268
DOI:10.1155/2013/414731