Linear chaotic resonance in vortex motion

For three-dimensional vortex motion, a linear mathematical model with random coefficients is considered, and formulas for the first two moment functions of solutions are derived. The conditions are found under which a linear chaotic resonance occurs; i.e., the mean angular velocity of the motion inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2013-04, Vol.53 (4), p.486-502
1. Verfasser: Zadorozhniy, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For three-dimensional vortex motion, a linear mathematical model with random coefficients is considered, and formulas for the first two moment functions of solutions are derived. The conditions are found under which a linear chaotic resonance occurs; i.e., the mean angular velocity of the motion increases. The results show that the energy of the vortex increases because of the chaotic motions present in the flow.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542513040118