The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems

A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reports on mathematical physics 2013-06, Vol.71 (3), p.305-351
Hauptverfasser: Prykarpatsky, Yarema A., Artemovych, Orest D., Pavlov, Maxim V., Prykarpatski, Anatolij K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 351
container_issue 3
container_start_page 305
container_title Reports on mathematical physics
container_volume 71
creator Prykarpatsky, Yarema A.
Artemovych, Orest D.
Pavlov, Maxim V.
Prykarpatski, Anatolij K.
description A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.
doi_str_mv 10.1016/S0034-4877(13)60035-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671527827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S003448771360035X</els_id><sourcerecordid>1567073935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-e1de8b8101a341027de79968cf680c09094541f0e2b4b7dc2d9382e80e2699043</originalsourceid><addsrcrecordid>eNqFUU1rGzEUFCWFOml_QkFH97CNtFqtpFMwSZoUTAu2C74JWXpbK-yHK8lx9t9HtkuuOT3eMDMwMwh9peQ7JbS-XhLCqqKSQkwp-1bnjxfrD2hCpVAFqUV1gSZvlE_oMsYnQiiXgk_QYbUFfOebBgL0yZu2mLV_YROMt3jWm3aMPuKhwcux27VgU4ZN7_DcvOBlCnub9gEiXkBrEjh88GmLf8EBLzx0pu-L1bgD_Di6MLixN11WL8eYoIuf0cfGtBG-_L9X6M-P-9XtYzH__fDzdjYvLBM8FUAdyI3MMQ2rKCmFA6FULW1TS2KJIqriFW0IlJtqI5wtnWKyBJmBWilSsSs0PfvuwvBvDzHpzkcLbWt6GPZR01pQXgpZivepvBZEMMV4pvIz1YYhxgCN3gXfmTBqSvRxE33aRB8L15Tp0yZ6nXU3Zx3kyM8ego7WQ2_B-ZDL1W7w7zi8AsSbk_I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567073935</pqid></control><display><type>article</type><title>The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems</title><source>Elsevier ScienceDirect Journals</source><creator>Prykarpatsky, Yarema A. ; Artemovych, Orest D. ; Pavlov, Maxim V. ; Prykarpatski, Anatolij K.</creator><creatorcontrib>Prykarpatsky, Yarema A. ; Artemovych, Orest D. ; Pavlov, Maxim V. ; Prykarpatski, Anatolij K.</creatorcontrib><description>A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.</description><identifier>ISSN: 0034-4877</identifier><identifier>EISSN: 1879-0674</identifier><identifier>DOI: 10.1016/S0034-4877(13)60035-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Compatibility ; compatible Poisson structures ; Computational fluid dynamics ; Degasperis–Processi equation ; differential-algebraic methods ; Fluid flow ; generalized Ostrovsky–Vakhnenko equation ; gradient holonomic algorithm ; Hierarchies ; Hydrodynamics ; Integral calculus ; Lax type integrability ; Lax-type representation ; Mathematical analysis ; Representations</subject><ispartof>Reports on mathematical physics, 2013-06, Vol.71 (3), p.305-351</ispartof><rights>2013 Polish Scientific Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-e1de8b8101a341027de79968cf680c09094541f0e2b4b7dc2d9382e80e2699043</citedby><cites>FETCH-LOGICAL-c375t-e1de8b8101a341027de79968cf680c09094541f0e2b4b7dc2d9382e80e2699043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S003448771360035X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Prykarpatsky, Yarema A.</creatorcontrib><creatorcontrib>Artemovych, Orest D.</creatorcontrib><creatorcontrib>Pavlov, Maxim V.</creatorcontrib><creatorcontrib>Prykarpatski, Anatolij K.</creatorcontrib><title>The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems</title><title>Reports on mathematical physics</title><description>A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.</description><subject>Compatibility</subject><subject>compatible Poisson structures</subject><subject>Computational fluid dynamics</subject><subject>Degasperis–Processi equation</subject><subject>differential-algebraic methods</subject><subject>Fluid flow</subject><subject>generalized Ostrovsky–Vakhnenko equation</subject><subject>gradient holonomic algorithm</subject><subject>Hierarchies</subject><subject>Hydrodynamics</subject><subject>Integral calculus</subject><subject>Lax type integrability</subject><subject>Lax-type representation</subject><subject>Mathematical analysis</subject><subject>Representations</subject><issn>0034-4877</issn><issn>1879-0674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUU1rGzEUFCWFOml_QkFH97CNtFqtpFMwSZoUTAu2C74JWXpbK-yHK8lx9t9HtkuuOT3eMDMwMwh9peQ7JbS-XhLCqqKSQkwp-1bnjxfrD2hCpVAFqUV1gSZvlE_oMsYnQiiXgk_QYbUFfOebBgL0yZu2mLV_YROMt3jWm3aMPuKhwcux27VgU4ZN7_DcvOBlCnub9gEiXkBrEjh88GmLf8EBLzx0pu-L1bgD_Di6MLixN11WL8eYoIuf0cfGtBG-_L9X6M-P-9XtYzH__fDzdjYvLBM8FUAdyI3MMQ2rKCmFA6FULW1TS2KJIqriFW0IlJtqI5wtnWKyBJmBWilSsSs0PfvuwvBvDzHpzkcLbWt6GPZR01pQXgpZivepvBZEMMV4pvIz1YYhxgCN3gXfmTBqSvRxE33aRB8L15Tp0yZ6nXU3Zx3kyM8ego7WQ2_B-ZDL1W7w7zi8AsSbk_I</recordid><startdate>201306</startdate><enddate>201306</enddate><creator>Prykarpatsky, Yarema A.</creator><creator>Artemovych, Orest D.</creator><creator>Pavlov, Maxim V.</creator><creator>Prykarpatski, Anatolij K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201306</creationdate><title>The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems</title><author>Prykarpatsky, Yarema A. ; Artemovych, Orest D. ; Pavlov, Maxim V. ; Prykarpatski, Anatolij K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-e1de8b8101a341027de79968cf680c09094541f0e2b4b7dc2d9382e80e2699043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Compatibility</topic><topic>compatible Poisson structures</topic><topic>Computational fluid dynamics</topic><topic>Degasperis–Processi equation</topic><topic>differential-algebraic methods</topic><topic>Fluid flow</topic><topic>generalized Ostrovsky–Vakhnenko equation</topic><topic>gradient holonomic algorithm</topic><topic>Hierarchies</topic><topic>Hydrodynamics</topic><topic>Integral calculus</topic><topic>Lax type integrability</topic><topic>Lax-type representation</topic><topic>Mathematical analysis</topic><topic>Representations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prykarpatsky, Yarema A.</creatorcontrib><creatorcontrib>Artemovych, Orest D.</creatorcontrib><creatorcontrib>Pavlov, Maxim V.</creatorcontrib><creatorcontrib>Prykarpatski, Anatolij K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Reports on mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prykarpatsky, Yarema A.</au><au>Artemovych, Orest D.</au><au>Pavlov, Maxim V.</au><au>Prykarpatski, Anatolij K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems</atitle><jtitle>Reports on mathematical physics</jtitle><date>2013-06</date><risdate>2013</risdate><volume>71</volume><issue>3</issue><spage>305</spage><epage>351</epage><pages>305-351</pages><issn>0034-4877</issn><eissn>1879-0674</eissn><abstract>A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0034-4877(13)60035-X</doi><tpages>47</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0034-4877
ispartof Reports on mathematical physics, 2013-06, Vol.71 (3), p.305-351
issn 0034-4877
1879-0674
language eng
recordid cdi_proquest_miscellaneous_1671527827
source Elsevier ScienceDirect Journals
subjects Compatibility
compatible Poisson structures
Computational fluid dynamics
Degasperis–Processi equation
differential-algebraic methods
Fluid flow
generalized Ostrovsky–Vakhnenko equation
gradient holonomic algorithm
Hierarchies
Hydrodynamics
Integral calculus
Lax type integrability
Lax-type representation
Mathematical analysis
Representations
title The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Differential-Algebraic%20Analysis%20of%20Symplectic%20and%20Lax%20Structures%20Related%20with%20New%20Riemann-Type%20Hydrodynamic%20Systems&rft.jtitle=Reports%20on%20mathematical%20physics&rft.au=Prykarpatsky,%20Yarema%20A.&rft.date=2013-06&rft.volume=71&rft.issue=3&rft.spage=305&rft.epage=351&rft.pages=305-351&rft.issn=0034-4877&rft.eissn=1879-0674&rft_id=info:doi/10.1016/S0034-4877(13)60035-X&rft_dat=%3Cproquest_cross%3E1567073935%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1567073935&rft_id=info:pmid/&rft_els_id=S003448771360035X&rfr_iscdi=true