The Differential-Algebraic Analysis of Symplectic and Lax Structures Related with New Riemann-Type Hydrodynamic Systems

A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reports on mathematical physics 2013-06, Vol.71 (3), p.305-351
Hauptverfasser: Prykarpatsky, Yarema A., Artemovych, Orest D., Pavlov, Maxim V., Prykarpatski, Anatolij K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A differential-algebraic approach to studying the Lax-type integrability of the generalized Riemann-type hydrodynamic hierarchy, proposed recently by O. D. Artemovych, M. V. Pavlov, Z. Popowicz and A. K. Prykarpatski, is developed. In addition to the Lax-type representation, found before by Z. Popowicz, a closely related representation is constructed in exact form by means of a new differential-functional technique. The bi-Hamiltonian integrability and compatible Poisson structures of the generalized Riemann type hierarchy are analyzed by means of the symplectic and gradient-holonomic methods. An application of the devised differential-algebraic approach to other Riemann and Vakhnenko type hydrodynamic systems is presented.
ISSN:0034-4877
1879-0674
DOI:10.1016/S0034-4877(13)60035-X