On the formal first cocycle equation for iteration groups of type II

Let x be an indeterminate over ℂ. We investigate solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Proceedings 2012-04, Vol.36, p.32-47
Hauptverfasser: Fripertinger, Harald, Reich, Ludwig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue
container_start_page 32
container_title ESAIM. Proceedings
container_volume 36
creator Fripertinger, Harald
Reich, Ludwig
description Let x be an indeterminate over ℂ. We investigate solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end{eqnarray}in ℂ [[x]], the ring of formal power series over ℂ, where (F(s,x))s ∈ ℂ is an iteration group of type II, i.e. it is a solution of the translation equation \begin{eqnarray} \advance \displaywidth by -6pc F(s+t,x)=F(s,F(t,x)),\qquad s,t\in\Complex, \hspace*{5cm}\rm(T)\nonumber \end{eqnarray}of the form F(s,x) ≡ x + ck(s)xk mod xk+1, where k ≥ 2 and ck ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions αn(s) of \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=1+\sum_{n\geq 1}\alpha_n(s)x^n\nonumber \end{eqnarray}are polynomials in ck(s). It is possible to replace this additive function ck by an indeterminate. Finally, we obtain a formal version of the first cocycle equation in the ring (ℂ [y]) [[x]] . We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character of these polynomials depending on certain parameters, the coefficients of the generator K of a formal cocycle for iteration groups of type II. Rewriting the solutions Γ(y,x) of the formal first cocycle equation in the form  ∑n ≥ 1ψn(x)yn as elements of (ℂ [[x]]) [[y]], we obtain explicit formulas for ψn in terms of the derivatives H(j)(x) and K(j)(x) of the generators H and K and also a representation of Γ(y,x) similar to a Lie–Gröbner series. There are interesting similarities between the solutions G(y,x) of the formal translation equation for iteration groups of type II and the solutions Γ(y,x) of the formal first cocycle equation for iteration groups of type II. Soit x une indéterminée dans ℂ. Nous étudions les solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, de la première équation de cocycle \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end
doi_str_mv 10.1051/proc/201236004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671520901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671520901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1954-91302ccaf022831c2a0d3013673c758361b2b1fbcc29e220cc2df324f53c67653</originalsourceid><addsrcrecordid>eNpNUMtOwzAQtBBIlMKVs49c0u7asdMcUXlVqqiQyuNmua4NgbRObUeif0-qIMRpdrUzo9kh5BJhhCBw3ARvxgyQcQmQH5EBsgKyEuDt-N98Ss5i_ARAyXM5IDeLLU0fljofNrqmrgoxUePN3tSW2l2rU-W3hyutkg399h5820TqHU37xtLZ7JycOF1He_GLQ_J8d7ucPmTzxf1sej3PDJYiz0rkwIzRDhibcDRMw5oDcllwU4gJl7hiK3QrY1hpGYMO146z3AluZCEFH5Kr3rd7ddfamNSmisbWtd5a30aFskDBoOw8h2TUU03wMQbrVBOqjQ57haAOdalDXeqvrk6Q9YIqJvv9x9bhS3X5CqEm8KrkfPr0mC-FeuE_BddrqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671520901</pqid></control><display><type>article</type><title>On the formal first cocycle equation for iteration groups of type II</title><source>EDP Open</source><source>Alma/SFX Local Collection</source><creator>Fripertinger, Harald ; Reich, Ludwig</creator><contributor>Reich, L. ; Fournier-Prunaret, D. ; Gardini, L.</contributor><creatorcontrib>Fripertinger, Harald ; Reich, Ludwig ; Reich, L. ; Fournier-Prunaret, D. ; Gardini, L.</creatorcontrib><description>Let x be an indeterminate over ℂ. We investigate solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end{eqnarray}in ℂ [[x]], the ring of formal power series over ℂ, where (F(s,x))s ∈ ℂ is an iteration group of type II, i.e. it is a solution of the translation equation \begin{eqnarray} \advance \displaywidth by -6pc F(s+t,x)=F(s,F(t,x)),\qquad s,t\in\Complex, \hspace*{5cm}\rm(T)\nonumber \end{eqnarray}of the form F(s,x) ≡ x + ck(s)xk mod xk+1, where k ≥ 2 and ck ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions αn(s) of \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=1+\sum_{n\geq 1}\alpha_n(s)x^n\nonumber \end{eqnarray}are polynomials in ck(s). It is possible to replace this additive function ck by an indeterminate. Finally, we obtain a formal version of the first cocycle equation in the ring (ℂ [y]) [[x]] . We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character of these polynomials depending on certain parameters, the coefficients of the generator K of a formal cocycle for iteration groups of type II. Rewriting the solutions Γ(y,x) of the formal first cocycle equation in the form  ∑n ≥ 1ψn(x)yn as elements of (ℂ [[x]]) [[y]], we obtain explicit formulas for ψn in terms of the derivatives H(j)(x) and K(j)(x) of the generators H and K and also a representation of Γ(y,x) similar to a Lie–Gröbner series. There are interesting similarities between the solutions G(y,x) of the formal translation equation for iteration groups of type II and the solutions Γ(y,x) of the formal first cocycle equation for iteration groups of type II. Soit x une indéterminée dans ℂ. Nous étudions les solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, de la première équation de cocycle \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end{eqnarray}dans ℂ [[x]], l’anneau des séries entières formelles sur ℂ, où (F(s,x))s ∈ ℂ est un groupe d’itération de type II, c’est-à-dire une solution de l’équation de translation \begin{eqnarray} \advance \displaywidth by -6pc F(s+t,x)=F(s,F(t,x)),\qquad s,t\in\Complex, \hspace*{5cm}\rm(T)\nonumber \end{eqnarray} de la forme F(s, x) ≡ x + ck(s)xk mod xk+1, où k ≥ 2 et ck ≠ 0 est nécessairement une fonction additive. Il est facile de démontrer que les fonctions coefficients αn(s) de \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=1+\sum_{n\geq 1}\alpha_n(s)x^n\nonumber \end{eqnarray} sont des polynômes dans ck(s). Il est possible de remplacer cette fonction addtitive ck par une indéterminée. Finalement, nous obtenons une version formelle de la première équation de cocycle dans l’anneau (ℂ [y]) [[x]]. Nous résolvons cette équation d’une manière complètement algébrique, en dérivant formellement les équations différentielles ou une équation de type Aczél–Jabotinsky. De cette manière il est possible d’obtenir la structure détaillée des coefficients qui sont maintenant des polynômes. Nous montrons le caractère universel de ces polynômes en fonction de certains paramètres, les coefficients du générateur K d’un cocycle formel pour les groupes d’itération de type II. En réécrivant les solutions Γ(y,x) de la première équation de cocycle sous la forme ∑n ≥ 1ψn(x)yn comme des éléments de (ℂ [[x]]) [[y]], nous obtenons des formules explicites pour ψn en terme des dérivées H(j)(x) et K(j)(x) des générateurs H et K et également une représentation de Γ(y,x) similaire à une série de Lie–Gröbner. Il y a des similarités intéressantes entre les solutions G(y,x) de l’équation de translation formelle pour les groupes d’itération de type II et les solutions Γ(y,x) de la première équation formelle de cocycle pour les groupes d’itération de type II.</description><identifier>ISSN: 1270-900X</identifier><identifier>EISSN: 1270-900X</identifier><identifier>DOI: 10.1051/proc/201236004</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>13F25 ; 39B12 ; 39B50 ; Additives ; Analogies ; anneau des séries formelles sur ℂ ; Derivatives ; First cocycle equation ; formal functional equations ; Generators ; groupes d’itération de type II ; iteration groups of type II ; Mathematical analysis ; Première équation de cocycle ; Representations ; ring of formal power series over ℂ ; Rings (mathematics) ; Translations ; équations fonctionnelles formelles</subject><ispartof>ESAIM. Proceedings, 2012-04, Vol.36, p.32-47</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1954-91302ccaf022831c2a0d3013673c758361b2b1fbcc29e220cc2df324f53c67653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Reich, L.</contributor><contributor>Fournier-Prunaret, D.</contributor><contributor>Gardini, L.</contributor><creatorcontrib>Fripertinger, Harald</creatorcontrib><creatorcontrib>Reich, Ludwig</creatorcontrib><title>On the formal first cocycle equation for iteration groups of type II</title><title>ESAIM. Proceedings</title><description>Let x be an indeterminate over ℂ. We investigate solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end{eqnarray}in ℂ [[x]], the ring of formal power series over ℂ, where (F(s,x))s ∈ ℂ is an iteration group of type II, i.e. it is a solution of the translation equation \begin{eqnarray} \advance \displaywidth by -6pc F(s+t,x)=F(s,F(t,x)),\qquad s,t\in\Complex, \hspace*{5cm}\rm(T)\nonumber \end{eqnarray}of the form F(s,x) ≡ x + ck(s)xk mod xk+1, where k ≥ 2 and ck ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions αn(s) of \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=1+\sum_{n\geq 1}\alpha_n(s)x^n\nonumber \end{eqnarray}are polynomials in ck(s). It is possible to replace this additive function ck by an indeterminate. Finally, we obtain a formal version of the first cocycle equation in the ring (ℂ [y]) [[x]] . We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character of these polynomials depending on certain parameters, the coefficients of the generator K of a formal cocycle for iteration groups of type II. Rewriting the solutions Γ(y,x) of the formal first cocycle equation in the form  ∑n ≥ 1ψn(x)yn as elements of (ℂ [[x]]) [[y]], we obtain explicit formulas for ψn in terms of the derivatives H(j)(x) and K(j)(x) of the generators H and K and also a representation of Γ(y,x) similar to a Lie–Gröbner series. There are interesting similarities between the solutions G(y,x) of the formal translation equation for iteration groups of type II and the solutions Γ(y,x) of the formal first cocycle equation for iteration groups of type II. Soit x une indéterminée dans ℂ. Nous étudions les solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, de la première équation de cocycle \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end{eqnarray}dans ℂ [[x]], l’anneau des séries entières formelles sur ℂ, où (F(s,x))s ∈ ℂ est un groupe d’itération de type II, c’est-à-dire une solution de l’équation de translation \begin{eqnarray} \advance \displaywidth by -6pc F(s+t,x)=F(s,F(t,x)),\qquad s,t\in\Complex, \hspace*{5cm}\rm(T)\nonumber \end{eqnarray} de la forme F(s, x) ≡ x + ck(s)xk mod xk+1, où k ≥ 2 et ck ≠ 0 est nécessairement une fonction additive. Il est facile de démontrer que les fonctions coefficients αn(s) de \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=1+\sum_{n\geq 1}\alpha_n(s)x^n\nonumber \end{eqnarray} sont des polynômes dans ck(s). Il est possible de remplacer cette fonction addtitive ck par une indéterminée. Finalement, nous obtenons une version formelle de la première équation de cocycle dans l’anneau (ℂ [y]) [[x]]. Nous résolvons cette équation d’une manière complètement algébrique, en dérivant formellement les équations différentielles ou une équation de type Aczél–Jabotinsky. De cette manière il est possible d’obtenir la structure détaillée des coefficients qui sont maintenant des polynômes. Nous montrons le caractère universel de ces polynômes en fonction de certains paramètres, les coefficients du générateur K d’un cocycle formel pour les groupes d’itération de type II. En réécrivant les solutions Γ(y,x) de la première équation de cocycle sous la forme ∑n ≥ 1ψn(x)yn comme des éléments de (ℂ [[x]]) [[y]], nous obtenons des formules explicites pour ψn en terme des dérivées H(j)(x) et K(j)(x) des générateurs H et K et également une représentation de Γ(y,x) similaire à une série de Lie–Gröbner. Il y a des similarités intéressantes entre les solutions G(y,x) de l’équation de translation formelle pour les groupes d’itération de type II et les solutions Γ(y,x) de la première équation formelle de cocycle pour les groupes d’itération de type II.</description><subject>13F25</subject><subject>39B12</subject><subject>39B50</subject><subject>Additives</subject><subject>Analogies</subject><subject>anneau des séries formelles sur ℂ</subject><subject>Derivatives</subject><subject>First cocycle equation</subject><subject>formal functional equations</subject><subject>Generators</subject><subject>groupes d’itération de type II</subject><subject>iteration groups of type II</subject><subject>Mathematical analysis</subject><subject>Première équation de cocycle</subject><subject>Representations</subject><subject>ring of formal power series over ℂ</subject><subject>Rings (mathematics)</subject><subject>Translations</subject><subject>équations fonctionnelles formelles</subject><issn>1270-900X</issn><issn>1270-900X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNpNUMtOwzAQtBBIlMKVs49c0u7asdMcUXlVqqiQyuNmua4NgbRObUeif0-qIMRpdrUzo9kh5BJhhCBw3ARvxgyQcQmQH5EBsgKyEuDt-N98Ss5i_ARAyXM5IDeLLU0fljofNrqmrgoxUePN3tSW2l2rU-W3hyutkg399h5820TqHU37xtLZ7JycOF1He_GLQ_J8d7ucPmTzxf1sej3PDJYiz0rkwIzRDhibcDRMw5oDcllwU4gJl7hiK3QrY1hpGYMO146z3AluZCEFH5Kr3rd7ddfamNSmisbWtd5a30aFskDBoOw8h2TUU03wMQbrVBOqjQ57haAOdalDXeqvrk6Q9YIqJvv9x9bhS3X5CqEm8KrkfPr0mC-FeuE_BddrqQ</recordid><startdate>201204</startdate><enddate>201204</enddate><creator>Fripertinger, Harald</creator><creator>Reich, Ludwig</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201204</creationdate><title>On the formal first cocycle equation for iteration groups of type II</title><author>Fripertinger, Harald ; Reich, Ludwig</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1954-91302ccaf022831c2a0d3013673c758361b2b1fbcc29e220cc2df324f53c67653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>13F25</topic><topic>39B12</topic><topic>39B50</topic><topic>Additives</topic><topic>Analogies</topic><topic>anneau des séries formelles sur ℂ</topic><topic>Derivatives</topic><topic>First cocycle equation</topic><topic>formal functional equations</topic><topic>Generators</topic><topic>groupes d’itération de type II</topic><topic>iteration groups of type II</topic><topic>Mathematical analysis</topic><topic>Première équation de cocycle</topic><topic>Representations</topic><topic>ring of formal power series over ℂ</topic><topic>Rings (mathematics)</topic><topic>Translations</topic><topic>équations fonctionnelles formelles</topic><toplevel>online_resources</toplevel><creatorcontrib>Fripertinger, Harald</creatorcontrib><creatorcontrib>Reich, Ludwig</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Proceedings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fripertinger, Harald</au><au>Reich, Ludwig</au><au>Reich, L.</au><au>Fournier-Prunaret, D.</au><au>Gardini, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the formal first cocycle equation for iteration groups of type II</atitle><jtitle>ESAIM. Proceedings</jtitle><date>2012-04</date><risdate>2012</risdate><volume>36</volume><spage>32</spage><epage>47</epage><pages>32-47</pages><issn>1270-900X</issn><eissn>1270-900X</eissn><abstract>Let x be an indeterminate over ℂ. We investigate solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end{eqnarray}in ℂ [[x]], the ring of formal power series over ℂ, where (F(s,x))s ∈ ℂ is an iteration group of type II, i.e. it is a solution of the translation equation \begin{eqnarray} \advance \displaywidth by -6pc F(s+t,x)=F(s,F(t,x)),\qquad s,t\in\Complex, \hspace*{5cm}\rm(T)\nonumber \end{eqnarray}of the form F(s,x) ≡ x + ck(s)xk mod xk+1, where k ≥ 2 and ck ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions αn(s) of \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=1+\sum_{n\geq 1}\alpha_n(s)x^n\nonumber \end{eqnarray}are polynomials in ck(s). It is possible to replace this additive function ck by an indeterminate. Finally, we obtain a formal version of the first cocycle equation in the ring (ℂ [y]) [[x]] . We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character of these polynomials depending on certain parameters, the coefficients of the generator K of a formal cocycle for iteration groups of type II. Rewriting the solutions Γ(y,x) of the formal first cocycle equation in the form  ∑n ≥ 1ψn(x)yn as elements of (ℂ [[x]]) [[y]], we obtain explicit formulas for ψn in terms of the derivatives H(j)(x) and K(j)(x) of the generators H and K and also a representation of Γ(y,x) similar to a Lie–Gröbner series. There are interesting similarities between the solutions G(y,x) of the formal translation equation for iteration groups of type II and the solutions Γ(y,x) of the formal first cocycle equation for iteration groups of type II. Soit x une indéterminée dans ℂ. Nous étudions les solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, de la première équation de cocycle \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end{eqnarray}dans ℂ [[x]], l’anneau des séries entières formelles sur ℂ, où (F(s,x))s ∈ ℂ est un groupe d’itération de type II, c’est-à-dire une solution de l’équation de translation \begin{eqnarray} \advance \displaywidth by -6pc F(s+t,x)=F(s,F(t,x)),\qquad s,t\in\Complex, \hspace*{5cm}\rm(T)\nonumber \end{eqnarray} de la forme F(s, x) ≡ x + ck(s)xk mod xk+1, où k ≥ 2 et ck ≠ 0 est nécessairement une fonction additive. Il est facile de démontrer que les fonctions coefficients αn(s) de \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=1+\sum_{n\geq 1}\alpha_n(s)x^n\nonumber \end{eqnarray} sont des polynômes dans ck(s). Il est possible de remplacer cette fonction addtitive ck par une indéterminée. Finalement, nous obtenons une version formelle de la première équation de cocycle dans l’anneau (ℂ [y]) [[x]]. Nous résolvons cette équation d’une manière complètement algébrique, en dérivant formellement les équations différentielles ou une équation de type Aczél–Jabotinsky. De cette manière il est possible d’obtenir la structure détaillée des coefficients qui sont maintenant des polynômes. Nous montrons le caractère universel de ces polynômes en fonction de certains paramètres, les coefficients du générateur K d’un cocycle formel pour les groupes d’itération de type II. En réécrivant les solutions Γ(y,x) de la première équation de cocycle sous la forme ∑n ≥ 1ψn(x)yn comme des éléments de (ℂ [[x]]) [[y]], nous obtenons des formules explicites pour ψn en terme des dérivées H(j)(x) et K(j)(x) des générateurs H et K et également une représentation de Γ(y,x) similaire à une série de Lie–Gröbner. Il y a des similarités intéressantes entre les solutions G(y,x) de l’équation de translation formelle pour les groupes d’itération de type II et les solutions Γ(y,x) de la première équation formelle de cocycle pour les groupes d’itération de type II.</abstract><pub>EDP Sciences</pub><doi>10.1051/proc/201236004</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1270-900X
ispartof ESAIM. Proceedings, 2012-04, Vol.36, p.32-47
issn 1270-900X
1270-900X
language eng
recordid cdi_proquest_miscellaneous_1671520901
source EDP Open; Alma/SFX Local Collection
subjects 13F25
39B12
39B50
Additives
Analogies
anneau des séries formelles sur ℂ
Derivatives
First cocycle equation
formal functional equations
Generators
groupes d’itération de type II
iteration groups of type II
Mathematical analysis
Première équation de cocycle
Representations
ring of formal power series over ℂ
Rings (mathematics)
Translations
équations fonctionnelles formelles
title On the formal first cocycle equation for iteration groups of type II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20formal%20first%20cocycle%20equation%20for%20iteration%20groups%20of%20type%20II&rft.jtitle=ESAIM.%20Proceedings&rft.au=Fripertinger,%20Harald&rft.date=2012-04&rft.volume=36&rft.spage=32&rft.epage=47&rft.pages=32-47&rft.issn=1270-900X&rft.eissn=1270-900X&rft_id=info:doi/10.1051/proc/201236004&rft_dat=%3Cproquest_cross%3E1671520901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1671520901&rft_id=info:pmid/&rfr_iscdi=true