On the formal first cocycle equation for iteration groups of type II

Let x be an indeterminate over ℂ. We investigate solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Proceedings 2012-04, Vol.36, p.32-47
Hauptverfasser: Fripertinger, Harald, Reich, Ludwig
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let x be an indeterminate over ℂ. We investigate solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end{eqnarray}in ℂ [[x]], the ring of formal power series over ℂ, where (F(s,x))s ∈ ℂ is an iteration group of type II, i.e. it is a solution of the translation equation \begin{eqnarray} \advance \displaywidth by -6pc F(s+t,x)=F(s,F(t,x)),\qquad s,t\in\Complex, \hspace*{5cm}\rm(T)\nonumber \end{eqnarray}of the form F(s,x) ≡ x + ck(s)xk mod xk+1, where k ≥ 2 and ck ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions αn(s) of \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=1+\sum_{n\geq 1}\alpha_n(s)x^n\nonumber \end{eqnarray}are polynomials in ck(s). It is possible to replace this additive function ck by an indeterminate. Finally, we obtain a formal version of the first cocycle equation in the ring (ℂ [y]) [[x]] . We solve this equation in a completely algebraic way, by deriving formal differential equations or an Aczél–Jabotinsky type equation. This way it is possible to get the structure of the coefficients in great detail which are now polynomials. We prove the universal character of these polynomials depending on certain parameters, the coefficients of the generator K of a formal cocycle for iteration groups of type II. Rewriting the solutions Γ(y,x) of the formal first cocycle equation in the form  ∑n ≥ 1ψn(x)yn as elements of (ℂ [[x]]) [[y]], we obtain explicit formulas for ψn in terms of the derivatives H(j)(x) and K(j)(x) of the generators H and K and also a representation of Γ(y,x) similar to a Lie–Gröbner series. There are interesting similarities between the solutions G(y,x) of the formal translation equation for iteration groups of type II and the solutions Γ(y,x) of the formal first cocycle equation for iteration groups of type II. Soit x une indéterminée dans ℂ. Nous étudions les solutions \begin{eqnarray} \advance \displaywidth by -6pc \alpha(s,x)=\sum_{n\geq 0} \alpha_n(s)x^n,\nonumber \end{eqnarray}αn : ℂ → ℂ, n ≥ 0, de la première équation de cocycle \begin{eqnarray} \advance \displaywidth by -6pc \alpha (s+t,x)= \alpha (s,x)\alpha \bigl(t,F (s,x)\bigr),\qquad s,t\in\Complex, \hspace*{5cm}{\rm(Co1)}\nonumber \end
ISSN:1270-900X
1270-900X
DOI:10.1051/proc/201236004