Fourier Transform Infrared (FT-IR) Spectroscopy for discrimination of Rhizoma gastrodiae (Tianma) from different producing areas

•The IR fingerprint analysis is an effective, specificity, rapid, non-destructive, non-polluting method.•The chemometrics tools (PCA and PLS-DA) applied in this study generated good exploratory and predictive results.•Fourier Transform Infrared (FT-IR) Spectroscopy coupled with Principal component a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular structure 2013-11, Vol.1051, p.66-71
Hauptverfasser: Fan, Qimeng, Chen, Chaoyin, Lin, Yuping, Zhang, Chunmei, Liu, Binqiu, Zhao, Shenglan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The IR fingerprint analysis is an effective, specificity, rapid, non-destructive, non-polluting method.•The chemometrics tools (PCA and PLS-DA) applied in this study generated good exploratory and predictive results.•Fourier Transform Infrared (FT-IR) Spectroscopy coupled with Principal component analysis (PCA) and Partial least squares-Discriminant analysis (PLS-DA) can successfully classify and identify Tianma from different producing areas. Due to Rhizoma gastrodiae (Tianma) from different producing areas have vital difference in quality and physiological efficacy. This study focused on the classification and identification of Tianma from different producing areas using Fourier Transform Infrared (FT-IR) Spectroscopy coupled with chemometrics. Frequencies at 1800–600cm−1 were exploited for both classification and identification. Principal component analysis (PCA) and Partial least squares-Discriminant analysis (PLS-DA) were used for classification and identification analysis of Tianma from different producing areas. Fourier Transform Infrared (FT-IR) Spectroscopy coupled with Principal component analysis (PCA) and Partial least squares-Discriminant analysis (PLS-DA) can successfully classify and identify Tianma from different producing areas. Taken together, the proposed methodology is a useful tool to identify Tianma from different producing areas.
ISSN:0022-2860
1872-8014
DOI:10.1016/j.molstruc.2013.07.039