Failure Analysis and Remanufacturing of Construction Machinery Shafts by HVOF Technique

In this work, a scrapped cross shaft which was assembled at the differential of ZL50C loader was analyzed by scanning electron microscopy (SEM) to examine the failure mechanism and was remanufactured by HVOF with ~500μm thickness WC-12Co coatings on it. The microstructure, phase compositions and pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2013-09, Vol.423-426 (Applied Materials and Technologies for Modern Manufacturing), p.771-774
Hauptverfasser: Ma, Ning, Zhang, Guo Sheng, Wu, Huan Tao, Ye, Fu Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a scrapped cross shaft which was assembled at the differential of ZL50C loader was analyzed by scanning electron microscopy (SEM) to examine the failure mechanism and was remanufactured by HVOF with ~500μm thickness WC-12Co coatings on it. The microstructure, phase compositions and properties of deposited WC-12Co coatings were investigated through optical microscope (OM), SEM, X-ray diffraction (XRD), microhardness tester and tensile testing machine. The results show that the coatings were very dense, and their porosities were lower than 1%. According to the X-ray Diffraction (XRD) analysis, the phase compositions of the sprayed coatings consisted of WC, Co and W2C. The microhardness of the coating was approximated to 1100 HV0.1 and the bonding strength was higher than 63.7 MPa. It can be concluded that WC-12Co coating sprayed by HVOF was suitable for the remanufacturing of shaft parts.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.423-426.771