Toxin modulators and blockers of hERG K+ channels

The K+ channel encoded by the Ether-á-go-go-Related Gene (ERG) is expressed in different tissues of different animal species. There are at least three subtypes of this channel, being the sub-type 1 (ERG1) crucial in the repolarization phase of the cardiac action potential. Mutations in this gene can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicon (Oxford) 2012-09, Vol.60 (4), p.492-501
Hauptverfasser: Jiménez-Vargas, J.M., Restano-Cassulini, R., Possani, L.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The K+ channel encoded by the Ether-á-go-go-Related Gene (ERG) is expressed in different tissues of different animal species. There are at least three subtypes of this channel, being the sub-type 1 (ERG1) crucial in the repolarization phase of the cardiac action potential. Mutations in this gene can affect the properties of the channel producing the type II long QT syndrome (LQTS2) and many drugs are also known to affect this channel with a similar side effect. Various scorpion, spider and sea anemone toxins affect the ERG currents by blocking the ion-conducting pore from the external side or by modulating channel gating through binding to the voltage-sensor domain. By doing so, these toxins become very useful tools for better understanding the structural and functional characteristics of these ion channels. This review discusses the interaction between the ERG channels and the peptides isolated from venoms of these animals. Special emphasis is placed on scorpion toxins, although the effects of several spider venom toxins and anemone toxins will be also revised.
ISSN:0041-0101
1879-3150
DOI:10.1016/j.toxicon.2012.03.024