A Physical-Mechanical Model of Ductile Fracture in Irradiated Austenitic Steels
We present the equations that describe nucleation and growth of voids in austenitic steels during deformation under various stress-state triaxiality ratios. The authors put forward a criterion of fracture due to void merging through the plastic instability mechanism in a void-containing material or...
Gespeichert in:
Veröffentlicht in: | Strength of materials 2013-03, Vol.45 (2), p.125-143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the equations that describe nucleation and growth of voids in austenitic steels during deformation under various stress-state triaxiality ratios. The authors put forward a criterion of fracture due to void merging through the plastic instability mechanism in a void-containing material or through the channel mechanism, i.e., shearing of bridges between voids. The equations include two void populations – the deformation-caused voids and the vacancy voids that arise during irradiation and result in the irradiation-induced swelling. The authors perform modeling of the influence of various factors (test temperature, neutron irradiation dose, stress-state triaxiality, irradiation-induced swelling) on plasticity and fracture toughness of material. The calculated results are compared to experimental findings. The influence of the stress-state triaxiality on plasticity of an irradiated material has been clarified. A relation has been found between the strain hardening parameters and plasticity, fracture toughness of material. |
---|---|
ISSN: | 0039-2316 1573-9325 |
DOI: | 10.1007/s11223-013-9440-7 |