A comparative study of compressed sensing approaches for 3-D synthetic aperture radar image reconstruction

This paper investigates two compressed sensing (CS) approaches that can be used to reconstruct 3-D synthetic aperture radar (SAR) images with undersampled measurements. Combining CS with the range migration algorithm (RMA), using either Stolt transform or non-uniform fast Fourier transform (NUFFT),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Digital signal processing 2014-09, Vol.32, p.24-33
Hauptverfasser: Yang, Zengli, Zheng, Yahong Rosa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates two compressed sensing (CS) approaches that can be used to reconstruct 3-D synthetic aperture radar (SAR) images with undersampled measurements. Combining CS with the range migration algorithm (RMA), using either Stolt transform or non-uniform fast Fourier transform (NUFFT), yields two different approaches: Stolt-CS and NUFFT-CS. These approaches can decrease the load of data acquisition while recovering satisfactory 3-D SAR images through l1-norm optimization. A simulated image is used as the ground truth to facilitate the comparative study. The 2-D structured similarity (SSIM) index is extended to 3-D to assess the quality of the reconstructed images. Both the simulation and the experimental reconstruction results demonstrate that the Stolt-CS contributes little to image quality improvement or computational complexity reduction due to the inaccuracy of the Stolt transform. In contrast, the NUFFT-CS achieves a good tradeoff between the reconstruction quality and the computational costs.
ISSN:1051-2004
1095-4333
DOI:10.1016/j.dsp.2014.05.016