A strategy for mass production of self-assembled nitrogen-doped graphene as catalytic materials
The mass production of graphene and nitrogen-doped (N-doped) graphene constitutes one of the main obstacles for the application of these materials. We demonstrate a novel resin-based methodology for large-scale self-assembly of the N-doped graphene. The N-doped graphene is readily obtained by using...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2013-01, Vol.1 (4), p.1401-1406 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mass production of graphene and nitrogen-doped (N-doped) graphene constitutes one of the main obstacles for the application of these materials. We demonstrate a novel resin-based methodology for large-scale self-assembly of the N-doped graphene. The N-doped graphene is readily obtained by using a precursor containing nitrogen and metal ions. The N-doped graphene is characterized by Raman, AFM, TEM, SEM, synchronic radiation and XPS measurements. The electrochemical performance of the catalyst made with such materials is investigated by a rotating ring-disk electrode (RRDE) system. The results reveal that the N-doped graphene is a selective catalyst and possesses an outstanding electrocatalytic activity, long-term stability, and good methanol and CO tolerance for oxygen reduction reaction (ORR). |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c2ta00807f |