Dynamic mass measurement in checkweighers using a discrete time-variant low-pass filter
Conveyor belt type checkweighers are complex mechanical systems consisting of a weighing sensor (strain gauge load cell, electrodynamically compensated load cell), packages (of different shapes, made of different materials) and a transport system (motors, gears, rollers). Disturbances generated by t...
Gespeichert in:
Veröffentlicht in: | Mechanical systems and signal processing 2014-10, Vol.48 (1-2), p.67-76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Conveyor belt type checkweighers are complex mechanical systems consisting of a weighing sensor (strain gauge load cell, electrodynamically compensated load cell), packages (of different shapes, made of different materials) and a transport system (motors, gears, rollers). Disturbances generated by the vibrating parts of such a system are reflected in the signal power spectra in a form of strong spectral peaks, located usually in the lower frequency range. Such low frequency components overlap in the frequency domain with the useful signal and it is very difficult to eliminate them. The conventional way of suppressing disturbances is via low-pass filtering of the signal obtained from the load cell. However, if the speed of the conveyor belt is high, the response of the applied filter may not settle fast enough to enable accurate weighing of objects in motion, i.e., without stopping them on the weighing conveyor. Since attempts to overcome this problem using classical linear time-invariant low-pass filtering fail for high belt speeds, the paper presents and verifies experimentally a new approach, based on time-variant low-pass filtering. It is shown that, when properly tuned, the proposed time-variant filter fulfills the measurement accuracy requirements for a wide range of operating conditions.
[Display omitted]
•Time-variant filter for a conveyor-belt type checkweigher is proposed.•Improved filter behavior is achieved by varying its cutoff frequency in time.•Optimal filter settings were found using the Nelder–Mead simplex method.•New solution is compared with classical filtering and identification-based approach. |
---|---|
ISSN: | 0888-3270 1096-1216 |
DOI: | 10.1016/j.ymssp.2014.02.013 |