Mode I and Mode II fracture energy of MWCNT reinforced nanofibrilmats interleaved carbon/epoxy laminates
Laboratory scale carbon/epoxy laminates were interleaved with electrospun Nylon 66 nanofibrilmat reinforced with multi wall carbon nanotubes (MWCNTs). The effect of the MWCNTs on the fracture energy was evaluated under Mode I and Mode II loading. It is shown that while nanofibrilmat interleaving res...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2014-01, Vol.90, p.48-56 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laboratory scale carbon/epoxy laminates were interleaved with electrospun Nylon 66 nanofibrilmat reinforced with multi wall carbon nanotubes (MWCNTs). The effect of the MWCNTs on the fracture energy was evaluated under Mode I and Mode II loading. It is shown that while nanofibrilmat interleaving resulted in a 3 times increase of the Mode I fracture energy compared to the non-interleaved laminates and the MWCNT reinforced nanofibrilmat interleaving resulted in a 4 times increase. Evaluation of the Mode II fracture energy indicated a 40% increase as a result of nanofibrilmats interleaving, while MWCNT reinforced nanofibrilmat interleaving resulted in a 60% increase. Mechanisms for the fracture energy increase of the MWCNT reinforced nanofibrilmats are suggested based on the test data and fractographic study of post-test specimen surfaces. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2013.10.013 |