Mixture estimation with state-space components and Markov model of switching

The paper proposes a recursive algorithm for estimation of mixtures with state-space components and a dynamic model of switching. Bayesian methodology is adopted. The main features of the presented approach are: (i) recursiveness that enables a real-time performance of the algorithm; (ii) one-pass e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematical modelling 2013-12, Vol.37 (24), p.9970-9984
Hauptverfasser: Nagy, Ivan, Suzdaleva, Evgenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper proposes a recursive algorithm for estimation of mixtures with state-space components and a dynamic model of switching. Bayesian methodology is adopted. The main features of the presented approach are: (i) recursiveness that enables a real-time performance of the algorithm; (ii) one-pass elaboration of the data sample; (iii) dynamic nature of the model of switching active components; (iv) orientation at explicit solutions with exploitation of numerical procedures only in those parts which cannot be computed analytically; (v) systematic approach to the Bayesian mixture estimation theory.
ISSN:0307-904X
DOI:10.1016/j.apm.2013.05.038