Spatial multinomial regression models for nominal categorical data: a study of land cover in Northern Wisconsin, USA

We develop statistical tools for regression analysis of nominal categorical data on a spatial lattice that are becoming increasingly abundant because of the advances of geographic information systems in environmental science. In a generalized linear mixed model framework, we model the response varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmetrics (London, Ont.) Ont.), 2013-03, Vol.24 (2), p.98-108
Hauptverfasser: Jin, Chongyang, Zhu, Jun, Steen-Adams, Michelle M., Sain, Stephan R., Gangnon, Ronald E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 2
container_start_page 98
container_title Environmetrics (London, Ont.)
container_volume 24
creator Jin, Chongyang
Zhu, Jun
Steen-Adams, Michelle M.
Sain, Stephan R.
Gangnon, Ronald E.
description We develop statistical tools for regression analysis of nominal categorical data on a spatial lattice that are becoming increasingly abundant because of the advances of geographic information systems in environmental science. In a generalized linear mixed model framework, we model the response variable by a multinomial distribution. There are two additive components in the linear predictor: a linear regression on covariates and a spatial random effect such that the spatial dependence in the random effect is induced by a multivariate conditional autoregressive model. Bayesian hierarchical modeling is used for statistical inference, and Markov chain Monte Carlo algorithms are devised to obtain posterior samples. The methodology is applied to analyze a northern Wisconsin land cover data set in a study that assesses the relationship between forest landscape structure and past social conditions, expanding the analytical tools available in landscape ecology and environmental history. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/env.2189
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671505035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671505035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3699-1f21161d5cfa0818ca190a8595c55efe7fb8872150e54c9acc48707000b6d9d93</originalsourceid><addsrcrecordid>eNqFkU9LAzEQxRdRUKvgR8jRg1uTbrObeBOtVSlVbP1zCzE7q9HdpCZptd_eLBXFg3iaB_Ob4c28JNkjuEsw7h2CWXR7hPG1ZItgzlPM6cN61IThtI8x30y2vX_BUeW02ErCZCaDljVq5nXQxjatdvDkwHttDWpsCbVHlXWobZrYVTLAk3VaRV3KII-QRD7MyyWyFaqlKZGyC3BIGzS2LjyDM-hee2WN1-YA3U6Od5KNStYedr9qJ7k9G0xPztPR1fDi5HiUqiyP1knVIyQnJVWVxIwwJQnHklFOFaVQQVE9Mlb0CMVA-4pLpfqswEW87TEvecmzTrK_2jtz9m0OPogm-oA6mgQ794LkRRymOKP_ozTH8Z-Ekx9UOeu9g0rMnG6kWwqCRZuBiBmINoOIpiv0Xdew_JMTg_Hdb177AB_fvHSvIi-ygor78VBM2enNJb2eiLvsEzGYl5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1560109191</pqid></control><display><type>article</type><title>Spatial multinomial regression models for nominal categorical data: a study of land cover in Northern Wisconsin, USA</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jin, Chongyang ; Zhu, Jun ; Steen-Adams, Michelle M. ; Sain, Stephan R. ; Gangnon, Ronald E.</creator><creatorcontrib>Jin, Chongyang ; Zhu, Jun ; Steen-Adams, Michelle M. ; Sain, Stephan R. ; Gangnon, Ronald E.</creatorcontrib><description>We develop statistical tools for regression analysis of nominal categorical data on a spatial lattice that are becoming increasingly abundant because of the advances of geographic information systems in environmental science. In a generalized linear mixed model framework, we model the response variable by a multinomial distribution. There are two additive components in the linear predictor: a linear regression on covariates and a spatial random effect such that the spatial dependence in the random effect is induced by a multivariate conditional autoregressive model. Bayesian hierarchical modeling is used for statistical inference, and Markov chain Monte Carlo algorithms are devised to obtain posterior samples. The methodology is applied to analyze a northern Wisconsin land cover data set in a study that assesses the relationship between forest landscape structure and past social conditions, expanding the analytical tools available in landscape ecology and environmental history. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1180-4009</identifier><identifier>EISSN: 1099-095X</identifier><identifier>DOI: 10.1002/env.2189</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Bayesian hierarchical model ; environmental history ; Geographic information systems ; Inference ; Land cover ; landscape ecology ; Landscapes ; Mathematical models ; Multivariate CAR model ; Regression ; spatial statistics ; Statistical methods</subject><ispartof>Environmetrics (London, Ont.), 2013-03, Vol.24 (2), p.98-108</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3699-1f21161d5cfa0818ca190a8595c55efe7fb8872150e54c9acc48707000b6d9d93</citedby><cites>FETCH-LOGICAL-c3699-1f21161d5cfa0818ca190a8595c55efe7fb8872150e54c9acc48707000b6d9d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fenv.2189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fenv.2189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Jin, Chongyang</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Steen-Adams, Michelle M.</creatorcontrib><creatorcontrib>Sain, Stephan R.</creatorcontrib><creatorcontrib>Gangnon, Ronald E.</creatorcontrib><title>Spatial multinomial regression models for nominal categorical data: a study of land cover in Northern Wisconsin, USA</title><title>Environmetrics (London, Ont.)</title><addtitle>Environmetrics</addtitle><description>We develop statistical tools for regression analysis of nominal categorical data on a spatial lattice that are becoming increasingly abundant because of the advances of geographic information systems in environmental science. In a generalized linear mixed model framework, we model the response variable by a multinomial distribution. There are two additive components in the linear predictor: a linear regression on covariates and a spatial random effect such that the spatial dependence in the random effect is induced by a multivariate conditional autoregressive model. Bayesian hierarchical modeling is used for statistical inference, and Markov chain Monte Carlo algorithms are devised to obtain posterior samples. The methodology is applied to analyze a northern Wisconsin land cover data set in a study that assesses the relationship between forest landscape structure and past social conditions, expanding the analytical tools available in landscape ecology and environmental history. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Bayesian hierarchical model</subject><subject>environmental history</subject><subject>Geographic information systems</subject><subject>Inference</subject><subject>Land cover</subject><subject>landscape ecology</subject><subject>Landscapes</subject><subject>Mathematical models</subject><subject>Multivariate CAR model</subject><subject>Regression</subject><subject>spatial statistics</subject><subject>Statistical methods</subject><issn>1180-4009</issn><issn>1099-095X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LAzEQxRdRUKvgR8jRg1uTbrObeBOtVSlVbP1zCzE7q9HdpCZptd_eLBXFg3iaB_Ob4c28JNkjuEsw7h2CWXR7hPG1ZItgzlPM6cN61IThtI8x30y2vX_BUeW02ErCZCaDljVq5nXQxjatdvDkwHttDWpsCbVHlXWobZrYVTLAk3VaRV3KII-QRD7MyyWyFaqlKZGyC3BIGzS2LjyDM-hee2WN1-YA3U6Od5KNStYedr9qJ7k9G0xPztPR1fDi5HiUqiyP1knVIyQnJVWVxIwwJQnHklFOFaVQQVE9Mlb0CMVA-4pLpfqswEW87TEvecmzTrK_2jtz9m0OPogm-oA6mgQ794LkRRymOKP_ozTH8Z-Ekx9UOeu9g0rMnG6kWwqCRZuBiBmINoOIpiv0Xdew_JMTg_Hdb177AB_fvHSvIi-ygor78VBM2enNJb2eiLvsEzGYl5E</recordid><startdate>201303</startdate><enddate>201303</enddate><creator>Jin, Chongyang</creator><creator>Zhu, Jun</creator><creator>Steen-Adams, Michelle M.</creator><creator>Sain, Stephan R.</creator><creator>Gangnon, Ronald E.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201303</creationdate><title>Spatial multinomial regression models for nominal categorical data: a study of land cover in Northern Wisconsin, USA</title><author>Jin, Chongyang ; Zhu, Jun ; Steen-Adams, Michelle M. ; Sain, Stephan R. ; Gangnon, Ronald E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3699-1f21161d5cfa0818ca190a8595c55efe7fb8872150e54c9acc48707000b6d9d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Bayesian hierarchical model</topic><topic>environmental history</topic><topic>Geographic information systems</topic><topic>Inference</topic><topic>Land cover</topic><topic>landscape ecology</topic><topic>Landscapes</topic><topic>Mathematical models</topic><topic>Multivariate CAR model</topic><topic>Regression</topic><topic>spatial statistics</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Chongyang</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>Steen-Adams, Michelle M.</creatorcontrib><creatorcontrib>Sain, Stephan R.</creatorcontrib><creatorcontrib>Gangnon, Ronald E.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmetrics (London, Ont.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Chongyang</au><au>Zhu, Jun</au><au>Steen-Adams, Michelle M.</au><au>Sain, Stephan R.</au><au>Gangnon, Ronald E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial multinomial regression models for nominal categorical data: a study of land cover in Northern Wisconsin, USA</atitle><jtitle>Environmetrics (London, Ont.)</jtitle><addtitle>Environmetrics</addtitle><date>2013-03</date><risdate>2013</risdate><volume>24</volume><issue>2</issue><spage>98</spage><epage>108</epage><pages>98-108</pages><issn>1180-4009</issn><eissn>1099-095X</eissn><abstract>We develop statistical tools for regression analysis of nominal categorical data on a spatial lattice that are becoming increasingly abundant because of the advances of geographic information systems in environmental science. In a generalized linear mixed model framework, we model the response variable by a multinomial distribution. There are two additive components in the linear predictor: a linear regression on covariates and a spatial random effect such that the spatial dependence in the random effect is induced by a multivariate conditional autoregressive model. Bayesian hierarchical modeling is used for statistical inference, and Markov chain Monte Carlo algorithms are devised to obtain posterior samples. The methodology is applied to analyze a northern Wisconsin land cover data set in a study that assesses the relationship between forest landscape structure and past social conditions, expanding the analytical tools available in landscape ecology and environmental history. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/env.2189</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1180-4009
ispartof Environmetrics (London, Ont.), 2013-03, Vol.24 (2), p.98-108
issn 1180-4009
1099-095X
language eng
recordid cdi_proquest_miscellaneous_1671505035
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Bayesian hierarchical model
environmental history
Geographic information systems
Inference
Land cover
landscape ecology
Landscapes
Mathematical models
Multivariate CAR model
Regression
spatial statistics
Statistical methods
title Spatial multinomial regression models for nominal categorical data: a study of land cover in Northern Wisconsin, USA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A47%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20multinomial%20regression%20models%20for%20nominal%20categorical%20data:%20a%20study%20of%20land%20cover%20in%20Northern%20Wisconsin,%20USA&rft.jtitle=Environmetrics%20(London,%20Ont.)&rft.au=Jin,%20Chongyang&rft.date=2013-03&rft.volume=24&rft.issue=2&rft.spage=98&rft.epage=108&rft.pages=98-108&rft.issn=1180-4009&rft.eissn=1099-095X&rft_id=info:doi/10.1002/env.2189&rft_dat=%3Cproquest_cross%3E1671505035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1560109191&rft_id=info:pmid/&rfr_iscdi=true