Spatial multinomial regression models for nominal categorical data: a study of land cover in Northern Wisconsin, USA

We develop statistical tools for regression analysis of nominal categorical data on a spatial lattice that are becoming increasingly abundant because of the advances of geographic information systems in environmental science. In a generalized linear mixed model framework, we model the response varia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmetrics (London, Ont.) Ont.), 2013-03, Vol.24 (2), p.98-108
Hauptverfasser: Jin, Chongyang, Zhu, Jun, Steen-Adams, Michelle M., Sain, Stephan R., Gangnon, Ronald E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop statistical tools for regression analysis of nominal categorical data on a spatial lattice that are becoming increasingly abundant because of the advances of geographic information systems in environmental science. In a generalized linear mixed model framework, we model the response variable by a multinomial distribution. There are two additive components in the linear predictor: a linear regression on covariates and a spatial random effect such that the spatial dependence in the random effect is induced by a multivariate conditional autoregressive model. Bayesian hierarchical modeling is used for statistical inference, and Markov chain Monte Carlo algorithms are devised to obtain posterior samples. The methodology is applied to analyze a northern Wisconsin land cover data set in a study that assesses the relationship between forest landscape structure and past social conditions, expanding the analytical tools available in landscape ecology and environmental history. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:1180-4009
1099-095X
DOI:10.1002/env.2189