Applying Reduced General Direct Space Vector Modulation Approach of AC-AC Matrix Converter Theory to Achieve Direct Power Factor Controlled Three-Phase AC-DC Matrix Rectifier

This paper presents a novel approach to achieve both tight dc voltage regulation and direct power factor control by applying general direct space vector modulation (G-SVM) of matrix converter theory to a three-phase ac-dc matrix rectifier. The reduced form of G-SVM and the derivation of the three-ph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2014-05, Vol.50 (3), p.2243-2257
Hauptverfasser: Keping You, Dan Xiao, Rahman, Muhammed Fazlur, Uddin, M. Nasir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a novel approach to achieve both tight dc voltage regulation and direct power factor control by applying general direct space vector modulation (G-SVM) of matrix converter theory to a three-phase ac-dc matrix rectifier. The reduced form of G-SVM and the derivation of the three-phase ac-dc matrix rectifier from a three-phase ac-ac matrix converter are described and theoretically justified. The proposed matrix converter features intrinsic buck conversion, tight output voltage regulation via modulation, inherent capability of four-quadrant operation, elimination of the bulky storage component on the dc bus, and sinusoidal input current. Moreover, the reduced G-SVM-controlled three-phase ac-dc matrix rectifier can achieve leading, lagging, or unity input power factor by simple and direct control of the input current displacement angle. This significantly benefits the potential application of the reduced G-SVM-controlled three-phase matrix rectifier to automotive, aircraft, ship, and other three-phase standby dc supplies. In these applications, the unity power factor control is indispensable when the dc load widely changes. Simulated and experimental verification for this strategy has been presented and discussed in this paper.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2013.2285956