Computing the Pressure Drop of Nanofluid Turbulent Flows in a Pipe Using an Artificial Neural Network Model
In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO sub(2)-water) is presented. Experimental measurements of TiO sub(2)-water under fully developed turbulent flow regime in pipe with different particle volumetric conce...
Gespeichert in:
Veröffentlicht in: | Open journal of fluid dynamics (Irvine, CA) CA), 2012-12, Vol.2 (4), p.130-136 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, an Artificial Neural Network (ANN) model to predict the pressure drop of turbulent flow of titanium dioxide-water (TiO sub(2)-water) is presented. Experimental measurements of TiO sub(2)-water under fully developed turbulent flow regime in pipe with different particle volumetric concentrations, nanoparticle diameters, nanofluid temperatures and Reynolds numbers have been used to construct the proposed ANN model. The ANN model was then tested by comparing the predicted results with the measured values at different experimental conditions. The predicted values of pressure drop agreed almost completely with the measured values. |
---|---|
ISSN: | 2165-3852 2165-3860 |
DOI: | 10.4236/ojfd.2012.24013 |