The least common multiple of consecutive arithmetic progression terms

Let k ≥ 0, a ≥ 1 and b ≥ 0 be integers. We define the arithmetic function gk,a,b for any positive integer n by $$ g_{k,a,b}(n):=\frac{(b+na)(b+(n+1)a)\cdots(b+(n+k)a)}{\operatorname{lcm}(b+na,b+(n+1)a,\dots,b+(n+k)a)}. $$ If we let a = 1 and b = 0, then gk,a,b becomes the arithmetic function that wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Edinburgh Mathematical Society 2011-06, Vol.54 (2), p.431-441
Hauptverfasser: Hong, Shaofang, Qian, Guoyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k ≥ 0, a ≥ 1 and b ≥ 0 be integers. We define the arithmetic function gk,a,b for any positive integer n by $$ g_{k,a,b}(n):=\frac{(b+na)(b+(n+1)a)\cdots(b+(n+k)a)}{\operatorname{lcm}(b+na,b+(n+1)a,\dots,b+(n+k)a)}. $$ If we let a = 1 and b = 0, then gk,a,b becomes the arithmetic function that was previously introduced by Farhi. Farhi proved that gk,1,0 is periodic and that k! is a period. Hong and Yang improved Farhi's period k! to lcm(1, 2, … , k) and conjectured that (lcm(1, 2, … , k, k + 1))/(k + 1) divides the smallest period of gk,1,0. Recently, Farhi and Kane proved this conjecture and determined the smallest period of gk,1,0. For the general integers a ≥ 1 and b ≥ 0, it is natural to ask the following interesting question: is gk,a,b periodic? If so, what is the smallest period of gk,a,b? We first show that the arithmetic function gk,a,b is periodic. Subsequently, we provide detailed p-adic analysis of the periodic function gk,a,b. Finally, we determine the smallest period of gk,a,b. Our result extends the Farhi–Kane Theorem from the set of positive integers to general arithmetic progressions.
ISSN:0013-0915
1464-3839
DOI:10.1017/S0013091509000431