Quantum-optical state engineering up to the two-photon level
The ability to prepare arbitrary quantum states within a certain Hilbert space is the holy grail of quantum information technology. It is particularly important for light, as this is the only physical system that can communicate quantum information over long distances. We propose and experimentally...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2010-04, Vol.4 (4), p.243-247 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ability to prepare arbitrary quantum states within a certain Hilbert space is the holy grail of quantum information technology. It is particularly important for light, as this is the only physical system that can communicate quantum information over long distances. We propose and experimentally verify a scheme to produce arbitrary single-mode states of a travelling light field up to the two-photon level. The desired state is remotely prepared in the signal channel of spontaneous parametric down-conversion by means of conditional measurements on the idler channel. The measurement consists of bringing the idler field into interference with two ancilla coherent states, followed by two single-photon detectors, which, in coincidence, herald the preparation event. By varying the amplitudes and phases of the ancillae, we can prepare any arbitrary superposition of zero-, one- and two-photon states.
Tailoring of arbitrary single-mode states of travelling light up to the two-photon level is proposed and demonstrated. The desired state is remotely prepared in the signal channel of spontaneous parametric down-conversion by means of conditional measurements on the idler channel. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/nphoton.2010.6 |