Real-coded genetic algorithm with uniform random local search

Genetic algorithms are efficient global optimizers, but they are weak in performing fine-grained local searches. In this paper, the local search capability of genetic algorithm is improved by hybridizing real coded genetic algorithm with ‘uniform random’ local search to form a hybrid real coded gene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-02, Vol.228, p.589-597
Hauptverfasser: Sawyerr, B.A., Adewumi, A.O., Ali, M.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic algorithms are efficient global optimizers, but they are weak in performing fine-grained local searches. In this paper, the local search capability of genetic algorithm is improved by hybridizing real coded genetic algorithm with ‘uniform random’ local search to form a hybrid real coded genetic algorithm termed ‘RCGAu’. The incorporated local technique is applied to all newly created offspring so that each offspring solution is given the opportunity to effectively search its local neighborhood for the best local optimum. Numerical experiments show that the performance of RCGA is remarkably improved by the uniform random local search technique.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2013.11.097