Simultaneous determination of trace migration of phthalate esters in honey and royal jelly by GC–MS

A simple, rapid, and reliable liquid–liquid extraction coupled to GC–MS method was developed and validated for the quantification of 22 phthalate esters (PAEs) in honey and royal jelly. Instrument parameters for GC–MS were tested to obtain the satisfactory separation between 22 PAEs with high sensit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of separation science 2014-03, Vol.37 (6), p.650-657
Hauptverfasser: Zhou, Jinhui, Qi, Yitao, Wu, Hongmei, Diao, Qingyun, Tian, Feifei, Li, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple, rapid, and reliable liquid–liquid extraction coupled to GC–MS method was developed and validated for the quantification of 22 phthalate esters (PAEs) in honey and royal jelly. Instrument parameters for GC–MS were tested to obtain the satisfactory separation between 22 PAEs with high sensitivity. The extraction procedure was optimized in order to achieve the best recovery. The following criteria were used to validate the developed method: linearity, LOD, lower LOQ, precision, accuracy, matrix effect and carry‐over. Correlation coefficients were >0.999 by applying the linear regression model based on the least‐squares method with a weighting factor (1/x). The intra‐ and interday precision were within 12.7% in terms of RSD, and the accuracy was within −11.8% in terms of relative error. The mean extraction recoveries ranged between 80.1 and 110.9% for honey and royal jelly. No significant matrix effect and carry‐over for PAEs were observed for the analysis of honey and royal jelly samples. A total of 20 real samples were analyzed for a mini‐survey using the developed method. Seven PAEs in honey samples and five PAEs in royal jelly samples were found, indicating potential contamination with several PAEs.
ISSN:1615-9306
1615-9314
DOI:10.1002/jssc.201300778