A Fast Terahertz Spectrometer Based on Frequency Selective Surface Filters

We present a fast spectrometer working in the 0.7–4.8 THz range. Broadband radiation from a blackbody source is focused first on a rotating silicon wafer, whose surface was patterned with 18 metal band-pass filters, then on the sample under test and finally is detected by a superconducting microbolo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of infrared, millimeter and terahertz waves millimeter and terahertz waves, 2012-05, Vol.33 (5), p.505-512
Hauptverfasser: Carelli, P., Chiarello, F., Cibella, S., Di Gaspare, A., Leoni, R., Ortolani, M., Torrioli, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a fast spectrometer working in the 0.7–4.8 THz range. Broadband radiation from a blackbody source is focused first on a rotating silicon wafer, whose surface was patterned with 18 metal band-pass filters, then on the sample under test and finally is detected by a superconducting microbolometer with microsecond time constant. The bolometer sensor is coupled to a spiral antenna whose frequency band matches the spectral range of the filters. The spectral resolution is set by the filters quality factor of about 3. A dynamic range of 100 and a S/N ratio of 20 are achieved by integrating for less than 10 second. The detector can operate up to 6 K in a closed-cycle cooler, hence making the present apparatus suitable for building up a simple terahertz video-rate spectrometer.
ISSN:1866-6892
1866-6906
DOI:10.1007/s10762-012-9884-z