Influence of test specimen on experimental characterization of timber–concrete composite joints

Load-carrying capacity of timber–concrete composite joints is usually evaluated using shear tests, which still lack specific standards. Regulations EN 26891 [1] and ASTM D 5652 [2] are usually used, both for timber joints, or EUROCODE 4 [3] for steel–concrete composite joints. Questions about test e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction & building materials 2010-08, Vol.24 (8), p.1313-1322
Hauptverfasser: Carvalho, Eliene Pires, Carrasco, Edgar V. Mantilla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Load-carrying capacity of timber–concrete composite joints is usually evaluated using shear tests, which still lack specific standards. Regulations EN 26891 [1] and ASTM D 5652 [2] are usually used, both for timber joints, or EUROCODE 4 [3] for steel–concrete composite joints. Questions about test execution and arrangement of specimens are frequent and recurrent [4–6]. Steel–concrete composite structures already have a standard shear test for joints (push-out), described in Johnson and Anderson [7]. These authors also discussed the many differences in the results of shear tests because of differences in test methods before EUROCODE 4 [3] standardization. This paper presents some questions about the arrangement of test specimens for shear tests in timber–concrete joints. An experimental program was performed for this reason. The aim of the work was to compare shear test results using two different series of specimens most utilized in a review of the literature: the push-out type with concrete center and timber sides and the push-out type with timber center and concrete sides. 8.0, 10.0 and 12.5 mm diameter corrugated bars were used as connectors. Eucalyptus grandis Brazilian hardwood timber glulam was used. Two-component epoxy adhesive was used to glue the connectors into the timber. Average cylinder compressive strength of the concrete was 25 MPa (28 days old). Reinforcement was 6.0 mm diameter 500 MPa-yield-stress corrugated bars. The results showed that test specimen arrangement influenced the strength and deformation characteristics of timber–concrete composite joints. The specimen with the best shear strength was the concrete–wood–concrete type, similar to those used in steel–concrete composite structures. Since the arrangement of test specimen is an important factor in joint tests, it is recommended that further efforts be made towards standardization.
ISSN:0950-0618
1879-0526
DOI:10.1016/j.conbuildmat.2009.12.036