Precise description of single and double ionization of hydrogen molecule in intense laser pulses

A new simulation box setup is introduced for the precise description of the wavepacket evolution of two electronic systems in intense laser pulses. In this box, the regions of the hydrogen molecule H(2), and singly and doubly ionized species, H(2) (+) and H(2) (+2), are well discernible and their ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2012-07, Vol.137 (4), p.044112-044112
Hauptverfasser: Vafaee, Mohsen, Sami, Firoozeh, Shokri, Babak, Buzari, Behnaz, Sabzyan, Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new simulation box setup is introduced for the precise description of the wavepacket evolution of two electronic systems in intense laser pulses. In this box, the regions of the hydrogen molecule H(2), and singly and doubly ionized species, H(2) (+) and H(2) (+2), are well discernible and their time-dependent populations are calculated at different laser field intensities. In addition, some new regions are introduced and characterized as quasi-double ionization and their time-dependencies on the laser field intensity are calculated and analyzed. The adopted simulation box setup is special in that it assures proper evaluation of the second ionization. In this study, the dynamics of the electrons and nuclei of the hydrogen molecule are separated based on the adiabatic approximation. The time-dependent Schrödinger and Newton equations are solved simultaneously for the electrons and the nuclei, respectively. Laser pulses of 390 nm wavelength at four different intensities (i.e., 1 × 10(14), 5 × 10(14), 1 × 10(15), and 5 × 10(15) W cm(-2)) are used in these simulations. Details of the central H(2) region are also presented and discussed. This region is divided into four sub-regions related to the ionic state H(+)H(-) and covalent (natural) state HH. The effect of the motion of nuclei on the enhanced ionization is discussed. Finally, some different time-dependent properties are calculated, their dependencies on the intensity of the laser pulse are studied, and their correlations with the populations of different regions are analyzed.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4737521