Riemann-Hilbert and Poincaré problems with discontinuous boundary conditions for some model systems of partial differential equations

We study the solvability of the Riemann-Hilbert and Poincaré problems for systems of Cauchy-Riemann and Bitsadze equations in Sobolev spaces. For a generalized system of Cauchy-Riemann equations, we pose a boundary value problem and prove its unique solvability in the Sobolev space W 2 1 ( D ). By s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2011-05, Vol.47 (5), p.696-705
1. Verfasser: Oshorov, B. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the solvability of the Riemann-Hilbert and Poincaré problems for systems of Cauchy-Riemann and Bitsadze equations in Sobolev spaces. For a generalized system of Cauchy-Riemann equations, we pose a boundary value problem and prove its unique solvability in the Sobolev space W 2 1 ( D ). By supplementing the Riemann-Hilbert boundary conditions with some new conditions, we obtain a statement of the Poincaré problem with discontinuous boundary conditions for a system of second-order Bitsadze equations; we also prove the unique solvability of this problem in Sobolev spaces.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266111050089