Riemann-Hilbert and Poincaré problems with discontinuous boundary conditions for some model systems of partial differential equations
We study the solvability of the Riemann-Hilbert and Poincaré problems for systems of Cauchy-Riemann and Bitsadze equations in Sobolev spaces. For a generalized system of Cauchy-Riemann equations, we pose a boundary value problem and prove its unique solvability in the Sobolev space W 2 1 ( D ). By s...
Gespeichert in:
Veröffentlicht in: | Differential equations 2011-05, Vol.47 (5), p.696-705 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the solvability of the Riemann-Hilbert and Poincaré problems for systems of Cauchy-Riemann and Bitsadze equations in Sobolev spaces. For a generalized system of Cauchy-Riemann equations, we pose a boundary value problem and prove its unique solvability in the Sobolev space
W
2
1
(
D
). By supplementing the Riemann-Hilbert boundary conditions with some new conditions, we obtain a statement of the Poincaré problem with discontinuous boundary conditions for a system of second-order Bitsadze equations; we also prove the unique solvability of this problem in Sobolev spaces. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266111050089 |