Energy Consumption and Environmental Implications of Wired Access Networks

Problem statement: Wired broadband Internet access can be realized using various technologies, configurations and protocols. It is widely deployed and able to provide both high data rates and high reliability. These features are of strong importance for many advanced applications. Since the number o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of engineering and applied sciences 2011-04, Vol.4 (4), p.531-539
Hauptverfasser: Aleksic, Slavisa, Lovric, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Problem statement: Wired broadband Internet access can be realized using various technologies, configurations and protocols. It is widely deployed and able to provide both high data rates and high reliability. These features are of strong importance for many advanced applications. Since the number of broadband subscribers worldwide grows exponentially, the power efficiency of access networks becomes increasingly important. Approach: The aim of this study is to study power consumption of different wired broadband access technologies including both those already widely used and those which are state-of-the-art, but not yet widely deployed. For this purpose, we developed a model for evaluating energy efficiency of wired access networks. The model is presented and applied to study energy efficiency of various access networks such as Hybrid Fiber Coax (HFC), Digital Subscriber Line (DSL), 1 and 10 Gbit/s point-to-point ethernet and Passive Optical Networks (1G-PON and 10G-PON). The metric for energy efficiency we used in this study is energy consumed per bit transmitted. Results: Results of the comparative study on energy efficiency of different access networks are shown and discussed. Additionally, we estimated environmental implications of different access options by means of reductions in Green House Gas (GHG) emissions caused by the electricity consumption of access network infrastructure. Conclusion: We found out that high-speed optical access technologies providing up to 10 Gbit/s per user have the potential to achieve the highest energy efficiency when assuming future broadband Internet access and broad use of advanced services and applications. However, for lower access data rates, 1G-PONs are the most energy efficient access options. Coper-based access technologies provide generally lower energy efficiency than the fiber based solutions. For transferring a large amount of data and when network equipment is switched offduring its inactivity times, optical access technologies have the highest potential to reduce GHG emissions caused by the electricity consumption of access network infrastructure.
ISSN:1941-7020
1941-7039
DOI:10.3844/ajeassp.2011.531.539