Undrained stability of a square tunnel where the shear strength increases linearly with depth
This paper investigates the stability of a plane strain square tunnel in undrained clay, where the shear strength profile increases linearly with depth. The stability for a range of tunnel geometries and soil conditions are found using rigid-block upper bound methods as well as finite element limit...
Gespeichert in:
Veröffentlicht in: | Computers and geotechnics 2013-04, Vol.49, p.314-325 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the stability of a plane strain square tunnel in undrained clay, where the shear strength profile increases linearly with depth. The stability for a range of tunnel geometries and soil conditions are found using rigid-block upper bound methods as well as finite element limit analysis. The latter procedures employ a discrete form of the bound theorems of classical plasticity, use a bespoke conic programming scheme to solve the resulting optimisation problems, and bracket the true collapse load with upper and lower bound solutions to within 5% for all the cases considered. Results from the parametric study are summarised in the form of stability charts. An approximate closed-form expression is developed for use by practising engineers. |
---|---|
ISSN: | 0266-352X 1873-7633 |
DOI: | 10.1016/j.compgeo.2012.09.005 |