Fluids in nanospaces: molecular simulation studies to find out key mechanisms for engineering
We have analyzed various phenomena that occur in nanopores, focusing on elucidating their key mechanisms, to advance the effective engineering use of nanoporous materials. As ideal experimental systems, molecular simulations can effectively provide information at the molecular level that leads to me...
Gespeichert in:
Veröffentlicht in: | Adsorption : journal of the International Adsorption Society 2014-02, Vol.20 (2-3), p.213-223 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have analyzed various phenomena that occur in nanopores, focusing on elucidating their key mechanisms, to advance the effective engineering use of nanoporous materials. As ideal experimental systems, molecular simulations can effectively provide information at the molecular level that leads to mechanistic insight. In this short review, several of our recent results are presented. The first topic is the critical point depression of Lennard-Jones fluid in silica slit pores due to finite size effects, studied by our original Monte Carlo (MC) technique. We demonstrate that the first layers of adsorbed molecules in contact with the pore walls act as a “fluid wall” and impose extra finite size effects on the fluid confined in the central portion of the pore. We next present a new kernel for pore size distribution (PSD) analysis, based entirely on molecular simulation, which consists of local isotherms for nitrogen adsorption in carbon slit pores at 77 K. The kernel is obtained by combining grand canonical Monte Carlo (GCMC) method and open pore cell MC method that was developed in the previous study. We show that overall trends of the PSDs of activated carbons calculated with our new kernel and with conventional kernel from non-local density functional theory are nearly the same; however, apparent difference can be seen between them. As the third topic, we apply a free energy analysis method with the aid of GCMC simulations to investigate the gating behavior observed in a porous coordination polymer, and propose a mechanism for the adsorption-induced structural transition based on both the theory of equilibrium and kinetics. Finally, we construct an atomistic silica pore model that mimics MCM-41, which has atomic-level surface roughness, and perform molecular simulations to understand the mechanism of capillary condensation with hysteresis. We calculate the work required for the gas–liquid transition from the simulation data, and show that the adsorption branch with hysteresis for MCM-41 arise from spontaneous capillary condensation from a metastable state. |
---|---|
ISSN: | 0929-5607 1572-8757 |
DOI: | 10.1007/s10450-013-9588-2 |