Fluorescence-lifetime measurements in atmospheric-pressure flames using nanosecond-pulsed lasers

Measurements of fluorescence lifetimes are needed to quantify concentration measurements when using linear laser-induced fluorescence. However, lifetimes are only a few nanoseconds for many important species at atmospheric pressure. When using a typical Q-switched laser with a pulse width of about 1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 2002-02, Vol.74 (2), p.167-174
1. Verfasser: RENFRO, M. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measurements of fluorescence lifetimes are needed to quantify concentration measurements when using linear laser-induced fluorescence. However, lifetimes are only a few nanoseconds for many important species at atmospheric pressure. When using a typical Q-switched laser with a pulse width of about 10 ns, the fluorescence follows the shape of the laser pulse and the lifetime cannot be easily measured. In this paper, a technique is described for experimentally determining the fluorescence lifetime in atmospheric-pressure flames using a nanosecond-pulsed laser; that is, measurement of a lifetime an order-of-magnitude faster than the laser pulse itself. This technique relies on an observable temporal shift in the fluorescence signal as a function of the lifetime. Simulations show the efficacy of this approach, and data in liquid samples and in an atmospheric-pressure flame show excellent agreement with prior picosecond measurements. This technique is successful because only the temporal shift is examined and details of the fluorescence profile are ignored.
ISSN:0946-2171
1432-0649
DOI:10.1007/s003400100785