A Comparative Study of Association Rule Algorithms for Course Recommender System in E-learning

A course Recommender System plays an important role in predicting the course selection by student. Here we consider the real data from Moodle course of our college & we try to obtain the result using Weka. Association rule algorithms are used to find out the best combination of courses in E-Lear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2012-01, Vol.39 (1), p.48-52
Hauptverfasser: BAher, Sunita, L.M.R.J, Lobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A course Recommender System plays an important role in predicting the course selection by student. Here we consider the real data from Moodle course of our college & we try to obtain the result using Weka. Association rule algorithms are used to find out the best combination of courses in E-Learning. Here in this paper we consider four association rule algorithms: Apriori Association Rule, PredictiveApriori Association Rule, Tertius Association Rule & Filtered Associator. We compare the result of these four algorithms & present the result. According to our simulation result, we find that Apriori association algorithms perform better than the Predictive Apriori Association Rule, Tertius Association Rule, & Filtered Associator in predicting the course selection based on student choice.
ISSN:0975-8887
0975-8887
DOI:10.5120/4788-7021