A quantum Mermin–Wagner theorem for quantum rotators on two-dimensional graphs

This is the first of a series of papers considering symmetry properties of quantum systems over 2D graphs or manifolds, with continuous spins, in the spirit of the Mermin–Wagner theorem [N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2013-03, Vol.54 (3), p.1
Hauptverfasser: Kelbert, Mark, Suhov, Yurii
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is the first of a series of papers considering symmetry properties of quantum systems over 2D graphs or manifolds, with continuous spins, in the spirit of the Mermin–Wagner theorem [N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett. 17, 1133–1136 (1966)]10.1103/PhysRevLett.17.1133 . In the model considered here (quantum rotators), the phase space of a single spin is a d-dimensional torus M, and spins (or particles) are attached to sites of a graph \documentclass[12pt]{minimal}\begin{document}$(\Gamma ,\mathcal {E})$\end{document} ( Γ , E ) satisfying a special bi-dimensionality property. The kinetic energy part of the Hamiltonian is minus a half of the Laplace operator −Δ/2 on M. We assume that the interaction potential is C2-smooth and invariant under the action of a connected Lie group \documentclass[12pt]{minimal}\begin{document}${\tt G}$\end{document} G (i.e., a Euclidean space \documentclass[12pt]{minimal}\begin{document}${\mathbb {R}}^{d^{\prime }}$\end{document} R d ′ or a torus M′ of dimension d′ ⩽ d) on M preserving the flat Riemannian metric. A part of our approach is to give a definition (and a construction) of a class of infinite-volume Gibbs states for the systems under consideration (the class \documentclass[12pt]{minimal}\begin{document}$\mathfrak {G}$\end{document} G ). This class contains the so-called limit Gibbs states, with or without boundary conditions. We use ideas and techniques originated from papers [R. L. Dobrushin and S. B. Shlosman, “Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics,” Commun. Math. Phys. 42, 31–40 (1975)10.1007/BF01609432 ; C.-E. Pfister, “On the symmetry of the Gibbs states in two-dimensional lattice systems,” Commun. Math. Phys. 79, 181–188 (1981)10.1007/BF01942060 ; J. Fröhlich and C. Pfister, “On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems,” Commun. Math. Phys. 81, 277–298 (1981)10.1007/BF01208901 ; B. Simon and A. Sokal, “Rigorous entropy-energy arguments,” J. Stat. Phys. 25, 679–694 (1981)10.1007/BF01022362 ; D. Ioffe, S. Shlosman and Y. Velenik, “2D models of statistical physics with continuous symmetry: The case of singular interactions,” Commun. Math. Phys. 226, 433–454 (2002)]10.1007/s002200200627 in combination with the Feynman–Kac representation, to prove that any state lying in the class \documentc
ISSN:0022-2488
1089-7658
DOI:10.1063/1.4790885