A quantum Mermin–Wagner theorem for quantum rotators on two-dimensional graphs
This is the first of a series of papers considering symmetry properties of quantum systems over 2D graphs or manifolds, with continuous spins, in the spirit of the Mermin–Wagner theorem [N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2013-03, Vol.54 (3), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This is the first of a series of papers considering symmetry properties of quantum systems over 2D graphs or manifolds, with continuous spins, in the spirit of the Mermin–Wagner theorem [N. D. Mermin and H. Wagner, “Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models,” Phys. Rev. Lett.
17, 1133–1136 (1966)]10.1103/PhysRevLett.17.1133
. In the model considered here (quantum rotators), the phase space of a single spin is a d-dimensional torus M, and spins (or particles) are attached to sites of a graph
\documentclass[12pt]{minimal}\begin{document}$(\Gamma ,\mathcal {E})$\end{document}
(
Γ
,
E
)
satisfying a special bi-dimensionality property. The kinetic energy part of the Hamiltonian is minus a half of the Laplace operator −Δ/2 on M. We assume that the interaction potential is C2-smooth and invariant under the action of a connected Lie group
\documentclass[12pt]{minimal}\begin{document}${\tt G}$\end{document}
G
(i.e., a Euclidean space
\documentclass[12pt]{minimal}\begin{document}${\mathbb {R}}^{d^{\prime }}$\end{document}
R
d
′
or a torus M′ of dimension d′ ⩽ d) on M preserving the flat Riemannian metric. A part of our approach is to give a definition (and a construction) of a class of infinite-volume Gibbs states for the systems under consideration (the class
\documentclass[12pt]{minimal}\begin{document}$\mathfrak {G}$\end{document}
G
). This class contains the so-called limit Gibbs states, with or without boundary conditions. We use ideas and techniques originated from papers [R. L. Dobrushin and S. B. Shlosman, “Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics,” Commun. Math. Phys.
42, 31–40 (1975)10.1007/BF01609432
; C.-E. Pfister, “On the symmetry of the Gibbs states in two-dimensional lattice systems,” Commun. Math. Phys.
79, 181–188 (1981)10.1007/BF01942060
; J. Fröhlich and C. Pfister, “On the absence of spontaneous symmetry breaking and of crystalline ordering in two-dimensional systems,” Commun. Math. Phys.
81, 277–298 (1981)10.1007/BF01208901
; B. Simon and A. Sokal, “Rigorous entropy-energy arguments,” J. Stat. Phys.
25, 679–694 (1981)10.1007/BF01022362
; D. Ioffe, S. Shlosman and Y. Velenik, “2D models of statistical physics with continuous symmetry: The case of singular interactions,” Commun. Math. Phys.
226, 433–454 (2002)]10.1007/s002200200627
in combination with the Feynman–Kac representation, to prove that any state lying in the class
\documentc |
---|---|
ISSN: | 0022-2488 1089-7658 |
DOI: | 10.1063/1.4790885 |