Rejection-free Monte Carlo scheme for anisotropic particles
We extend the geometric cluster algorithm [ J. Liu and E. Luijten , Phys. Rev. Lett. 92 , 035504 ( 2004 )] , a highly efficient, rejection-free Monte Carlo scheme for fluids and colloidal suspensions, to the case of anisotropic particles. This is made possible by adopting hyperspherical boundary con...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2012-04, Vol.136 (14), p.144111-144111-19 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the geometric cluster algorithm
[
J. Liu
and
E. Luijten
,
Phys. Rev. Lett.
92
,
035504
(
2004
)]
, a highly efficient, rejection-free Monte Carlo scheme for fluids and colloidal suspensions, to the case of anisotropic particles. This is made possible by adopting hyperspherical boundary conditions. A detailed derivation of the algorithm is presented, along with extensive implementation details as well as benchmark results. We describe how the quaternion notation is particularly suitable for the four-dimensional geometric operations employed in the algorithm. We present results for asymmetric Lennard-Jones dimers and for the Yukawa one-component plasma in hyperspherical geometry. The efficiency gain that can be achieved compared to conventional, Metropolis-type Monte Carlo simulations is investigated for rod-sphere mixtures as a function of rod aspect ratio, rod-sphere diameter ratio, and rod concentration. The effect of curved geometry on physical properties is addressed. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.3694271 |